Treffer: Distributed Nonconvex Power Control using Gibbs Sampling

Title:
Distributed Nonconvex Power Control using Gibbs Sampling
Source:
IEEE transactions on communications. 60(12):3886-3898
Publisher Information:
New York, NY: Institute of Electrical and Electronics Engineers, 2012.
Publication Year:
2012
Physical Description:
print, 19 ref
Original Material:
INIST-CNRS
Subject Terms:
Telecommunications, Télécommunications, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Telecommunications et theorie de l'information, Telecommunications and information theory, Théorie de l'information, du signal et des communications, Information, signal and communications theory, Théorie du signal et des communications, Signal and communications theory, Signal, bruit, Signal, noise, Détection, estimation, filtrage, égalisation, prédiction, Detection, estimation, filtering, equalization, prediction, Réduction bruit, Noise reduction, Reducción ruido, Algorithme optimal, Optimal algorithm, Algoritmo óptimo, Algorithme réparti, Distributed algorithm, Algoritmo repartido, Brouillage voie commune, Cochannel interference, Commande optimale, Optimal control, Control óptimo, Commande puissance, Power control, Control potencia, Commande répartie, Distributed control, Control repartido, Complexité communication, Communication complexity, Echantillonnage Gibbs, Gibbs sampling, Muestreo Gibbs, Envoi message, Message passing, Fonction utilité, Utility function, Función utilidad, Modèle 2 dimensions, Two dimensional model, Modelo 2 dimensiones, Monotonie, Monotonicity, Monotonía, Optimum global, Global optimum, Optimo global, Programmation non convexe, Non convex programming, Programación no convexa, Réseau sans fil, Wireless network, Red sin hilo, Solution optimale, Optimal solution, Solución óptima, Suppression interférence, Interference suppression, Traitement signal, Signal processing, Procesamiento señal, Télécommunication sans fil, Wireless telecommunication, Telecomunicación sin hilo, Nonconvex global optimization, System utility maximization
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
Department of Information Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong-Kong
Department of Electrical Engineering, Princeton University, NJ 08544, United States
ISSN:
0090-6778
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Telecommunications and information theory
Accession Number:
edscal.28149857
Database:
PASCAL Archive

Weitere Informationen

Transmit power control in wireless networks has long been recognized as an effective mechanism to mitigate co-channel interference. Due to the highly non-convex nature, optimal power control is known to be difficult to achieve if a system utility is to be maximized. In our earlier paper [11], we have proposed a centralized optimal power control algorithm that obtains the global optimal solution for both concave and non-concave system utility functions. A question remained unanswered is whether such global optimal solution can be achieved in a distributed manner. This paper addresses the question by developing a Gibbs Sampling based Asynchronous distributed power control algorithm (referred to as GLAD). The proposed algorithm quickly converges to the global optimal solution regardless of the concavity, differentiability and monotonicity of the utility function. To further enhance the practicality of the algorithm, this paper proposes two variants of the GLAD algorithm, namely I-GLAD and NI-GLAD, to reduce message passing in two dimensions of communication complexity, i.e., time and space. In particular, I-GLAD, where the prefix I stands for Infrequent message passing, reduces the time overhead of message passing. The convergence of I-GLAD can be proved regardless of the reduction in the message passing rate. Meanwhile, NI-GLAD, where the prefix N stands for Neighborhood message passing, restricts the computation overhead related to message passing to a small neighborhood space. Our results show that the optimality of the solution obtained by NI-GLAD depends on the selection of the neighborhood size.