Treffer: Robust Adaptive Beamforming for General-Rank Signal Model With Positive Semi-Definite Constraint via POTDC
Department of Signal Processing and Acoustics, Aalto University, 00076 AALTO, Finland
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Weitere Informationen
The robust adaptive beamforming (RAB) problem for general-rank signal model with an additional positive semi-definite constraint is considered. Using the principle of the worst-case performance optimization, such RAB problem leads to a difference-of-convex functions (DC) optimization problem. The existing approaches for solving the resulted non-convex DC problem are based on approximations and find only suboptimal solutions. Here, we aim at finding the globally optimal solution for the non-convex DC problem and clarify the conditions under which the solution is guaranteed to be globally optimal. Particularly, we rewrite the problem as the minimization of a one-dimensional optimal value function (OVF). Then, the OVF is replaced with another equivalent one, for which the corresponding optimization problem is convex. The new one-dimensional OVF is minimized iteratively via polynomial time DC (POTDC) algorithm. We show that the POTDC converges to a point that satisfies Karush-Kuhn-Tucker (KKT) optimality conditions, and such point is the global optimum under certain conditions. Towards this conclusion, we prove that the proposed algorithm finds the globally optimal solution if the presumed norm of the mismatch matrix that corresponds to the desired signal covariance matrix is sufficiently small. The new RAB method shows superior performance compared to the other state-of-the-art general-rank RAB methods.