Treffer: Generative embeddings based on Rician mixtures for kernel-based classification of magnetic resonance images

Title:
Generative embeddings based on Rician mixtures for kernel-based classification of magnetic resonance images
Source:
Neurocomputing (Amsterdam). 123:49-59
Publisher Information:
Amsterdam: Elsevier, 2014.
Publication Year:
2014
Physical Description:
print, 42 ref
Original Material:
INIST-CNRS
Subject Terms:
Cognition, Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Logiciel, Software, Organisation des mémoires. Traitement des données, Memory organisation. Data processing, Traitement des données. Listes et chaînes de caractères, Data processing. List processing. Character string processing, Intelligence artificielle, Artificial intelligence, Reconnaissance des formes. Traitement numérique des images. Géométrie algorithmique, Pattern recognition. Digital image processing. Computational geometry, Sciences biologiques et medicales, Biological and medical sciences, Sciences medicales, Medical sciences, Psychopathologie. Psychiatrie, Psychopathology. Psychiatry, Etude clinique de l'adulte et de l'adolescent, Adult and adolescent clinical studies, Psychoses, Schizophrénie, Schizophrenia, Techniques d'exploration et de diagnostic (generalites), Investigative techniques, diagnostic techniques (general aspects), Radiodiagnostic. Imagerie rmn. Spectrométrie rmn, Radiodiagnosis. Nmr imagery. Nmr spectrometry, Système nerveux, Nervous system, Psychologie. Psychanalyse. Psychiatrie, Psychology. Psychoanalysis. Psychiatry, PSYCHOPATHOLOGIE. PSYCHIATRIE, Algorithme EM, EM algorithm, Algoritmo EM, Analyse amas, Cluster analysis, Analisis cluster, Analyse discriminante, Discriminant analysis, Análisis discriminante, Analyse donnée, Data analysis, Análisis datos, Apprentissage supervisé, Supervised learning, Aprendizaje supervisado, Approche probabiliste, Probabilistic approach, Enfoque probabilista, Classification à vaste marge, Vector support machine, Máquina ejemplo soporte, Dualité, Duality, Dualidad, Imagerie RMN, Nuclear magnetic resonance imaging, Imaginería RMN, Information Fisher, Fisher information, Información Fisher, Modèle agrégé, Aggregate model, Modelo agregado, Modélisation, Modeling, Modelización, Mélange, Mixture, Mezcla, Méthode noyau, Kernel method, Método núcleo, Région intérêt, Interest region, Región interès, Résultat expérimental, Experimental result, Resultado experimental, Schizophrénie, Schizophrenia, Esquizofrenia, Structure donnée, Data structure, Estructura datos, Séquence image, Image sequence, Secuencia imagen, Théorie information, Information theory, Teoría información, Traitement image, Image processing, Procesamiento imagen, Apprentissage non supervisé, Unsupervised learning, Aprendizaje no supervisado, Modèle génératif, Generative model, Modelo generativo, Boosting, Discriminative learning, Generative embedding, Rician mixture
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Dipartimento di Informatica, Università di Verona, Verona, Italy
Instituto de Telecomunicações, Instituto Superior Técnico, Lisboa, Portugal
Istituto Italiano di Tecnologia (IIT), Genova, Italy
ISSN:
0925-2312
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Psychopathology. Psychiatry. Clinical psychology

Scanning and diagnostic techniques (generalities)

FRANCIS
Accession Number:
edscal.28282853
Database:
PASCAL Archive

Weitere Informationen

Classical approaches to classifier learning for structured objects (such as images or sequences) are based on probabilistic generative models. On the other hand, state-of-the-art classifiers for vectorial data are learned discriminatively. In recent years, these two dual paradigms have been combined via the use of generative embeddings (of which the Fisher kernel is arguably the best known example); these embeddings are mappings from the object space into a fixed dimensional score space, induced by a generative model learned from data, on which a (maybe kernel-based) discriminative approach can then be used. This paper proposes a new semi-parametric approach to build generative embeddings for classification of magnetic resonance images (MRI). Based on the fact that MRI data is well described by Rice distributions, we propose to use Rician mixtures as the underlying generative model, based on which several different generative embeddings are built. These embeddings yield vectorial representations on which kernel-based support vector machines (SVM) can be trained for classification. Concerning the choice of kernel, we adopt the recently proposed nonextensive information theoretic kernels. The methodology proposed was tested on a challenging classification task, which consists in classifying MRI images as belonging to schizophrenic or non-schizophrenic human subjects. The classification is based on a set of regions of interest (ROIs) in each image, with the classifiers corresponding to each ROI being combined via AdaBoost. The experimental results show that the proposed methodology outperforms the previous state-of-the-art methods on the same dataset.