Treffer: Self-taught learning via exponential family sparse coding for cost-effective patient thought record categorization

Title:
Self-taught learning via exponential family sparse coding for cost-effective patient thought record categorization
Source:
Personal and ubiquitous computing (Print). 18(1):27-35
Publisher Information:
Heidelberg: Springer, 2014.
Publication Year:
2014
Physical Description:
print, 27 ref
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Logiciel, Software, Organisation des mémoires. Traitement des données, Memory organisation. Data processing, Traitement des données. Listes et chaînes de caractères, Data processing. List processing. Character string processing, Intelligence artificielle, Artificial intelligence, Apprentissage et systèmes adaptatifs, Learning and adaptive systems, Sciences biologiques et medicales, Biological and medical sciences, Sciences medicales, Medical sciences, Psychopathologie. Psychiatrie, Psychopathology. Psychiatry, Etude clinique de l'adulte et de l'adolescent, Adult and adolescent clinical studies, Troubles de l'humeur, Mood disorders, Etat dépressif, Depression, Thérapeutiques, Treatments, Thérapie comportementale. Thérapie cognitive, Behavior therapy. Cognitive therapy, Psychologie. Psychanalyse. Psychiatrie, Psychology. Psychoanalysis. Psychiatry, PSYCHOPATHOLOGIE. PSYCHIATRIE, Apprentissage inductif, Inductive learning, Aprendizaje por inducción, Apprentissage probabilités, Probability learning, Aprendizaje probabilidades, Autoapprentissage, Self learning, Autodidactismo, Catégorisation, Categorization, Categorización, Classification automatique, Automatic classification, Clasificación automática, Clinique, Clinic, Clínica, Collecte donnée, Data gathering, Recolección dato, Diagnostic, Diagnosis, Diagnóstico, Donnée discrète, Discrete data, Variable discreta, Etat dépressif, Depression, Estado depresivo, Famille exponentielle, Exponential family, Familia exponencial, Gestion des connaissances, Knowledge management, Gestión conocimiento, Information incomplète, Incomplete information, Información incompleta, Intelligence artificielle, Artificial intelligence, Inteligencia artificial, Modélisation, Modeling, Modelización, Pensée, Thought, Pensamiento, Processus Gauss, Gaussian process, Proceso Gauss, Précision élevée, High precision, Precisión elevada, Raisonnement basé sur cas, Case based reasoning, Razonamiento fundado sobre caso, Représentation parcimonieuse, Sparse representation, Representación parsimoniosa, Résultat expérimental, Experimental result, Resultado experimental, Texte, Text, Texto, Thérapie cognitive, Cognitive therapy, Terapia cognitiva, Thérapie comportementale, Behavior therapy, Terapia conductual, Transfert des connaissances, Knowledge transfer, Transferencia conocimiento, Apprentissage semi-supervisé, Semi-supervised learning, Aprendizaje semi-supervisado, Codage parcimonieux, Sparse coding, Código parsimonioso, Cognitive behavior therapy, Cost-effective classification, Major depressive disorder, Self-taught learning, Thought record
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Department of Electrical Engineering and Computer Science, Colorado School of Mines, Golden, CO 80401, United States
Department of Computer Science and Engineering. University of Texas at Arlington, Arlington, TX 76019, United States
Department of Psychology, University of Texas at Arlington, Arlington, TX 76019, United States
School of Social Work, University of Texas, Austin, TX 78712, United States
ISSN:
1617-4909
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Psychopathology. Psychiatry. Clinical psychology

FRANCIS
Accession Number:
edscal.28283698
Database:
PASCAL Archive

Weitere Informationen

Automatic patient thought record categorization (TR) is important in cognitive behavior therapy, which is an useful augmentation of standard clinic treatment for major depressive disorder. Because both collecting and labeling TR data are expensive, it is usually cost prohibitive to require a large amount of TR data, as well as their corresponding category labels, to train a classification model with high classification accuracy. Because in practice we only have very limited amount of labeled and unlabeled training TR data, traditional semi-supervised learning methods and transfer learning methods, which are the most commonly used strategies to deal with the lack of training data in statistical learning, cannot work well in the task of automatic TR categorization. To address this challenge, we propose to tackle the TR categorization problem from a new perspective via self-taught learning, an emerging technique in machine learning. Self-taught learning is a special type of transfer learning. Instead of requiring labeled data from an auxiliary domain that are relevant to the classification task of interest as in traditional transfer learning methods, it learns the inherent structures of the auxiliary data and does not require their labels. As a result, a classifier achieves decent classification accuracy using the limited amount of labeled TR texts, with the assistance from the large amount of text data obtained from some inexpensive, or even no-cost, resources. That is, a cost-effective TR categorization system can be built that may be particularly useful for diagnosis of patients and training of new therapists. By further taking into account the discrete nature input text data, instead of using the traditional Gaussian sparse coding in self-taught learning, we use exponential family sparse coding to better simulate the distribution of the input data. We apply the proposed method to the task of classifying patient homework texts. Experimental results show the effectiveness of the proposed automatic TR classification framework.