Treffer: 1-Norm extreme learning machine for regression and multiclass classification using Newton method
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Operational research. Management
Telecommunications and information theory
Weitere Informationen
In this paper, a novel 1-norm extreme learning machine (ELM) for regression and multiclass classification is proposed as a linear programming problem whose solution is obtained by solving its dual exterior penalty problem as an unconstrained minimization problem using a fast Newton method. The algorithm converges from any starting point and can be easily implemented in MATLAB. The main advantage of the proposed approach is that it leads to a sparse model representation meaning that many components of the optimal solution vector will become zero and therefore the decision function can be determined using much less number of hidden nodes in comparison to ELM. Numerical experiments were performed on a number of interesting real-world benchmark datasets and their results are compared with ELM using additive and radial basis function (RBF) hidden nodes, optimally pruned ELM (OP-ELM) and support vector machine (SVM) methods. Similar or better generalization performance of the proposed method on the test data over ELM, OP-ELM and SVM clearly illustrates its applicability and usefulness.