Treffer: Vision enhanced neuro-cognitive structure for robotic spatial cognition

Title:
Vision enhanced neuro-cognitive structure for robotic spatial cognition
Source:
Neurocomputing (Amsterdam). 129:49-58
Publisher Information:
Amsterdam: Elsevier, 2014.
Publication Year:
2014
Physical Description:
print, 23 ref
Original Material:
INIST-CNRS
Subject Terms:
Cognition, Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Intelligence artificielle, Artificial intelligence, Reconnaissance des formes. Traitement numérique des images. Géométrie algorithmique, Pattern recognition. Digital image processing. Computational geometry, Connexionnisme. Réseaux neuronaux, Connectionism. Neural networks, Automatique théorique. Systèmes, Control theory. Systems, Robotique, Robotics, Sciences biologiques et medicales, Biological and medical sciences, Sciences biologiques fondamentales et appliquees. Psychologie, Fundamental and applied biological sciences. Psychology, Psychologie. Psychophysiologie, Psychology. Psychophysiology, Cognition. Intelligence, Connaissance de l'espace. Connaissance du temps, Spatial perception. Time perception, Psychologie. Psychanalyse. Psychiatrie, Psychology. Psychoanalysis. Psychiatry, Cerveau, Brain, Cerebro, Cognition spatiale, Spatial cognition, Cognición espacial, Encéphale, Encephalon, Encéfalo, Hippocampe, Hippocampus, Hipocampo, Incarnation, Embodiment, Encarnación, Indice aptitude, Capability index, Indice aptitud, Intelligence artificielle, Artificial intelligence, Inteligencia artificial, Localisation, Localization, Localización, Mémoire spatiale, Spatial memory, Memoria espacial, Navigation, Navegación, Neurophysiologie, Neurophysiology, Neurofisiología, Représentation spatiale, Spatial representation, Representación espacial, Robot mobile, Moving robot, Robot móvil, Robotique, Robotics, Robótica, Réseau neuronal, Neural network, Red neuronal, Système nerveux central, Central nervous system, Sistema nervioso central, Vision ordinateur, Computer vision, Visión ordenador, Biomimétique, Biomimetics, Biomimética, Brain-inspired model, Embodied cognition, Neurobotics, Place-dependent response
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Institute for Infocomm Research, Agency for Science Technology and Research (A*STAR), Singapore 138632, Singapore
College of Computer Science, Sichuan University, Chengdu, China
ISSN:
0925-2312
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Psychology. Ethology

FRANCIS
Accession Number:
edscal.28284367
Database:
PASCAL Archive

Weitere Informationen

This paper presents a brain inspired neural architecture with spatial cognition and navigation capability. The brain inspired system is mainly composed of two parts: a bio-inspired hierarchical vision architecture (HMAX) and a hippocampal-like circuitry. The HMAX encodes vision inputs as neural activities and maps to hippocampal-like circuitry which stores this information. Sensing a similar neural activity pattern this information can be recalled. The system is tested on a mobile robot which is placed in a spatial memory task. Among the regions in hippocampus, CA1 has place dependance response. With this property, the hippocampal-like circuitry stores the goal location according to the vision pattern, and recalls it when a similar vision pattern is seen again. The place dependent pattern of CA1 guides the motor neuronal area which then dictates the robot move to the goal location. The result of our current study indicates a possible way of connection between hippocampus and vision system, which will help robots perform a rodent-like behavior in the end.