Result: Goal-oriented behavior sequence generation based on semantic commands using multiple timescales recurrent neural network with initial state correction

Title:
Goal-oriented behavior sequence generation based on semantic commands using multiple timescales recurrent neural network with initial state correction
Source:
Neurocomputing (Amsterdam). 129:67-77
Publisher Information:
Amsterdam: Elsevier, 2014.
Publication Year:
2014
Physical Description:
print, 17 ref
Original Material:
INIST-CNRS
Subject Terms:
Cognition, Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Intelligence artificielle, Artificial intelligence, Reconnaissance des formes. Traitement numérique des images. Géométrie algorithmique, Pattern recognition. Digital image processing. Computational geometry, Connexionnisme. Réseaux neuronaux, Connectionism. Neural networks, Automatique théorique. Systèmes, Control theory. Systems, Robotique, Robotics, Sciences biologiques et medicales, Biological and medical sciences, Sciences biologiques fondamentales et appliquees. Psychologie, Fundamental and applied biological sciences. Psychology, Psychologie. Psychophysiologie, Psychology. Psychophysiology, Perception, Vision, Psychologie. Psychanalyse. Psychiatrie, Psychology. Psychoanalysis. Psychiatry, Analyse sémantique, Semantic analysis, Análisis semántico, Analyse temporelle, Time analysis, Análisis temporal, Apprentissage renforcé, Reinforcement learning, Aprendizaje reforzado, Attention sélective, Selective attention, Atención selectiva, Attention visuelle, Visual attention, Atención visual, Correction automatique, Automatic correction, Corrección automática, Dialogue homme machine, Man machine dialogue, Diálogo hombre máquina, Echelle temps, Time scale, Escala tiempo, Gestion tâche, Task scheduling, Gestión labor, Langage naturel, Natural language, Lenguaje natural, Localisation objet, Object location, Localización objeto, Modélisation, Modeling, Modelización, Profondeur champ, Depth of field, Profundidad campo, Représentation connaissance, Knowledge representation, Representación conocimientos, Retour expérience, Experience feedback, Retorno experiencia, Robot, Robotique, Robotics, Robótica, Résultat expérimental, Experimental result, Resultado experimental, Signal visuel, Visual signal, Señal visual, Système autonome, Autonomous system, Sistema autónomo, Système multiagent, Multiagent system, Sistema multiagente, Vision ordinateur, Computer vision, Visión ordenador, Poursuite cible, Target tracking, Persecución de blanco, Réseau neuronal récurrent, Recurrent neural nets, Red neuronal recurrente, Autonomous robot, Behavior sequence generation, Robot tasks involving multiple objects, Semantic commands for robot, Visual attention shifts
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
School of Electronics Engineering, Kyungpook National University, 1370 Sankyuk-Dong, Puk-Gu, Taegu 702-701, Korea, Republic of
School of Information Science, Japan Advanced Institute of Science and Technology, Ishikawa, Nomi, 923-1211, Japan
School of Robotics Engineering, Kyungpook National University, 1370 Sankyuk-Dong, Puk-Gu, Taegu 702-701, Korea, Republic of
Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, Korea, Republic of
ISSN:
0925-2312
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Psychology. Ethology

FRANCIS
Accession Number:
edscal.28284369
Database:
PASCAL Archive

Further Information

In this paper, to build an autonomous robot, we propose a novel scheme for a goal-oriented behavior sequence generation in tasks involving multiple objects. The scheme includes three major functions: (1) visual attention for target object localization; (2) automatic initial state correction based on experience using simple reinforcement learning, and (3) a suitable behavior sequence generation method based on multiple timescales recurrent neural networks (MTRNN). The proposed scheme systematically combines the three different major functions so that the autonomous bi-pad robot can automatically execute tasks involving multiple objects based on high level semantic commands given by human supervisor. The selective attention model continuously catches the visual environment to understand the current states of robot and perceive the relationship between current states of robot and the environment (depth perception and localization of a target object). If the current state is different from the initial state (depth perception and localization of a target object), the robot automatically adjust its current state to the initial state by integrating visual attention and simple reinforcement learning. After correcting the initial state of the robot, the behavior sequence generation functions can successfully generate suitable behavior timing signals, by integrating visual attention and MTRNN, based on the high level semantic commands given by human supervisor. Experimental results show that the proposed scheme can successfully generate suitable behavior timing, for a robot to autonomously achieve the tasks involving multiple objects, such as searching, approaching and hitting the target object using its arm.