Treffer: Evaluation of hyperbox neural network learning for classification

Title:
Evaluation of hyperbox neural network learning for classification
Source:
Neurocomputing (Amsterdam). 133:249-257
Publisher Information:
Amsterdam: Elsevier, 2014.
Publication Year:
2014
Physical Description:
print, 26 ref
Original Material:
INIST-CNRS
Subject Terms:
Cognition, Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Informatique théorique, Theoretical computing, Recherche information. Graphe, Information retrieval. Graph, Logiciel, Software, Organisation des mémoires. Traitement des données, Memory organisation. Data processing, Traitement des données. Listes et chaînes de caractères, Data processing. List processing. Character string processing, Intelligence artificielle, Artificial intelligence, Connexionnisme. Réseaux neuronaux, Connectionism. Neural networks, Algorithme apprentissage, Learning algorithm, Algoritmo aprendizaje, Algorithme rétropropagation, Backpropagation algorithm, Algoritmo retropropagación, Amas, Cluster, Montón, Analyse amas, Cluster analysis, Analisis cluster, Apprentissage supervisé, Supervised learning, Aprendizaje supervisado, Approche probabiliste, Probabilistic approach, Enfoque probabilista, Arbre décision, Decision tree, Arbol decisión, Boucle anticipation, Feedforward, Ciclo anticipación, Classification à vaste marge, Vector support machine, Máquina ejemplo soporte, Efficacité, Efficiency, Eficacia, Fonction activation, Activation function, Función actividad, Méthode adaptative, Adaptive method, Método adaptativo, Méthode heuristique, Heuristic method, Método heurístico, Plus proche voisin, Nearest neighbour, Vecino más cercano, Recommandation, Recommendation, Recomendación, Réseau neuronal, Neural network, Red neuronal, Rétropropagation, Backpropagation, Retropropagacíon, Théorie graphe, Graph theory, Teoría grafo, Apprentissage non supervisé, Unsupervised learning, Aprendizaje no supervisado, Perceptron multicouche, Multilayer perceptrons, Perceptrón multicapa, Adaptive functions neural network, Classification, Clustering, Hyperbox neural network, Modal learning
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Coventry University, Priory Street, Coventry CV1 5FB, United Kingdom
ISSN:
0925-2312
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.28293613
Database:
PASCAL Archive

Weitere Informationen

This paper evaluates the performance of a number of novel extensions of the hyperbox neural network algorithm, a method which uses different modes of learning for supervised classification problems. One hyperbox per class is defined that covers the full range of attribute values in the class. Each hyperbox has one or more neurons associated with it, which model the class distribution. During prediction, points falling into only one hyperbox can be classified immediately, with the neural outputs used only when points lie in overlapping regions of hyperboxes. Decomposing the learning problem into easier and harder regions allows extremely efficient classification. We introduce an unsupervised clustering stage in each hyperbox followed by supervised learning of a neuron per cluster. Both random and heuristic-driven initialisation of the cluster centres and initial weight vectors are considered. We also consider an adaptive activation function for use in the neural mode. The performance and computational efficiency of the hyperbox methods is evaluated on artificial datasets and publically available real datasets and compared with results obtained on the same datasets using Support Vector Machine, Decision tree, K-nearest neighbour, and Multilayer Perceptron (with Back Propagation) classifiers. We conclude that the method is competitively performing, computationally efficient and provide recommendations for best usage of the method based on results on artificial datasets, and evaluation of sensitivity to initialisation.