Treffer: Sequential Monte Carlo Methods for State and Parameter Estimation in Abruptly Changing Environments
Department of Automatic Control and Systems Engineering Sheffield University, Sheffield S1 4DT, United Kingdom
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Weitere Informationen
This paper develops a novel sequential Monte Carlo (SMC) approach for joint state and parameter estimation that can deal efficiently with abruptly changing parameters which is a common case when tracking maneuvering targets. The approach combines Bayesian methods for dealing with change-points with methods for estimating static parameters within the SMC framework. The result is an approach that adaptively estimates the model parameters in accordance with changes to the target's trajectory. The developed approach is compared against the Interacting Multiple Model (IMM) filter for tracking a maneuvering target over a complex maneuvering scenario with nonlinear observations. In the IMM filter a large combination of models is required to account for unknown parameters. In contrast, the proposed approach circumvents the combinatorial complexity of applying multiple models in the IMM filter through Bayesian parameter estimation techniques. The developed approach is validated over complex maneuvering scenarios where both the system parameters and measurement noise parameters are unknown. Accurate estimation results are presented.