Treffer: Positive Lightning Peak Currents Reported by the U.S. National Lightning Detection Network

Title:
Positive Lightning Peak Currents Reported by the U.S. National Lightning Detection Network
Source:
IEEE transactions on electromagnetic compatibility. 56(2):404-412
Publisher Information:
New York, NY: Institute of Electrical and Electronics Engineers, 2014.
Publication Year:
2014
Physical Description:
print, 17 ref
Original Material:
INIST-CNRS
Subject Terms:
Electrical engineering, Electrotechnique, Physics, Physique, Telecommunications, Télécommunications, Sciences exactes et technologie, Exact sciences and technology, Physique, Physics, Physique des particules elementaires et champs, The physics of elementary particles and fields, Théorie générale des champs et particules, General theory of fields and particles, Courants et leurs propriétés, Currents and their properties, Théorie générale des courants, General theory of currents, Courants pseudovectoriels partiellement conservés, Partially conserved axial-vector currents, Théories spécifiques et modèles d'interaction; systématique des particules, Specific theories and interaction models; particle systematics, Interactions électrofaibles, Electroweak interactions, Courants neutres, Neutral currents, Physique des gaz, des plasmas et des decharges electriques, Physics of gases, plasmas and electric discharges, Physique des plasmas et décharges électriques, Physics of plasmas and electric discharges, Décharges électriques, Electric discharges, Arcs, étincelles, éclairs, Arcs, sparks, lightning, Algorithme, Algorithms, Capteur mesure, Measurement sensor, Captador medida, Champ électrique, Electric fields, Décharge atmosphérique, Lightning discharge, Descarga atmosférica, Décharge en retour, Return stroke, Descarga de retorno, Détection défaut, Defect detection, Detección imperfección, Eclair, Lightning, Rayo, Equation régression, Regression equation, Ecuación regresión, Gain, Méthode TLM, TLM method, Método TLM, Résistance mécanique, Mechanical strength, 0707D, 1140D, 1140H, 1215M, 5280M, 9145F, 9150J, 9430J, Field-to-current conversion equation, National Lightning Detection Network (NLDN), peak current, positive lightning, transmission line model
Time:
1140
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Vaisala Inc., Louisville, CO 80027, United States
Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, United States
Department of Atmospheric Sciences, University of Arizona, Tucson, AZ 85721, United States
ISSN:
0018-9375
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Physics of elementary particles and fields

Physics of gases, plasmas and electric discharges
Accession Number:
edscal.28496691
Database:
PASCAL Archive

Weitere Informationen

We infer peak currents from radiation electric field peaks of 48 positive return strokes acquired in Gainesville, FL, USA, from 2007 to 2008. In doing so, we use the transmission line model, National Lightning Detection Network (NLDN) -reported distances, and assumed return-stroke speed. From a similar analysis of negative subsequent strokes, it appears that the implied return-stroke speed in the NLDN field-to-current conversion equation is 1.8 × 108 m/s (the NLDN peak current estimation algorithm is calibrated for negative subsequent strokes). The NLDN uses the same field-to-current conversion procedure (and hence the same implied return-stroke speed) for positive return strokes. However, NLDN-reported peak currents for positive return strokes differ from peak currents predicted by the transmission line model with an assumed return-stroke speed of 1.8 × 108 m/s. The discrepancy between regression equations for negative and positive return strokes suggests that the NLDN procedure to compensate for field propagation effects and find the average range-normalized signal strength (RNSS) works differently for these two groups of strokes. We find that the difference can be explained by the bias toward NLDN sensor reports from larger distances for positive strokes combined with the higher relative sensor gain (the ratio of sensor's peak current estimate to the NLDN-reported peak current) at larger distances.