Treffer: A collective neurodynamic optimization approach to bound-constrained nonconvex optimization

Title:
A collective neurodynamic optimization approach to bound-constrained nonconvex optimization
Source:
Neural networks. 55:20-29
Publisher Information:
Kidlington: Elsevier, 2014.
Publication Year:
2014
Physical Description:
print, 3/4 p
Original Material:
INIST-CNRS
Subject Terms:
Cognition, Electronics, Electronique, Computer science, Informatique, Neurology, Neurologie, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Intelligence artificielle, Artificial intelligence, Connexionnisme. Réseaux neuronaux, Connectionism. Neural networks, Sciences biologiques et medicales, Biological and medical sciences, Sciences biologiques fondamentales et appliquees. Psychologie, Fundamental and applied biological sciences. Psychology, Psychologie. Psychophysiologie, Psychology. Psychophysiology, Psychologie sociale, Social psychology, Interactions sociales. Communication. Processus de groupe, Social interactions. Communication. Group processes, Psychologie. Psychanalyse. Psychiatrie, Psychology. Psychoanalysis. Psychiatry, Algorithme évolutionniste, Evolutionary algorithm, Algoritmo evoluciónista, Cognition sociale, Social cognition, Cognición social, Comportement de groupe, Group behavior, Comportamiento de grupo, Efficacité, Efficiency, Eficacia, Intelligence en essaim, Swarm intelligence, Inteligencia de enjambre, Modélisation, Modeling, Modelización, Méthode Kuhn Tucker, Kuhn Tucker method, Método Kuhn Tucker, Neurophysiologie, Neurophysiology, Neurofisiología, Optimisation PSO, Particle swarm optimization, Optimización PSO, Optimisation sous contrainte, Constrained optimization, Optimización con restricción, Optimum local, Local optimum, Optimo local, Programmation mathématique, Mathematical programming, Programación matemática, Programmation non convexe, Non convex programming, Programación no convexa, Recherche locale, Local search, Busca local, Réseau neuronal, Neural network, Red neuronal, Satisfaction contrainte, Constraint satisfaction, Satisfaccion restricción, Solution globale, Global solution, Solución global, Solution optimale, Optimal solution, Solución óptima, Temps réel, Real time, Tiempo real, Traitement contrainte, Constraint handling, Multimodalité, Multimodality, Multimodulidad, Réseau neuronal récurrent, Recurrent neural nets, Red neuronal recurrente, Collective neurodynamic optimization, Nonconvex optimization, Recurrent neural network
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong-Kong
School of Control Science and Engineering, Dalian University of Technology, Dalian, Liaoning, China
Department of Mathematics, Beijing Information Science and Technology University, Beijing, China
ISSN:
0893-6080
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Psychology. Ethology

FRANCIS
Accession Number:
edscal.28517034
Database:
PASCAL Archive

Weitere Informationen

This paper presents a novel collective neurodynamic optimization method for solving nonconvex optimization problems with bound constraints. First, it is proved that a one-layer projection neural network has a property that its equilibria are in one-to-one correspondence with the Karush-Kuhn-Tucker points of the constrained optimization problem. Next, a collective neurodynamic optimization approach is developed by utilizing a group of recurrent neural networks in framework of particle swarm optimization by emulating the paradigm of brainstorming. Each recurrent neural network carries out precise constrained local search according to its own neurodynamic equations. By iteratively improving the solution quality of each recurrent neural network using the information of locally best known solution and globally best known solution, the group can obtain the global optimal solution to a nonconvex optimization problem. The advantages of the proposed collective neurodynamic optimization approach over evolutionary approaches lie in its constraint handling ability and real-time computational efficiency. The effectiveness and characteristics of the proposed approach are illustrated by using many multimodal benchmark functions.