Treffer: Parallel Monte Carlo simulation in the canonical ensemble on the graphics processing unit
Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI 48202, United States
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Computer science; theoretical automation; systems
Weitere Informationen
Graphics processing units (GPUs) offer parallel computing power that usually requires a cluster of networked computer or a supercomputer to accomplish. While writing kernel code is fairly straightforward, achieving efficiency and performance requires very careful optimisation decisions and changes to the original serial algorithm. We introduce a parallel canonical ensemble Monte Carlo (MC) simulation that runs entirely on the GPU. In this paper, we describe two MC simulation codes of Lennard-Jones particles in the canonical ensemble, a single CPU core and a parallel GPU implementations. Using Compute Unified Device Architecture, the parallel implementation enables the simulation of systems containing over 200,000 particles in a reasonable amount of time, which allows researchers to obtain more accurate simulation results. A remapping algorithm is introduced to balance the load of the device resources and demonstrate by experimental results that the efficiency of this algorithm is bounded by available GPU resource. Our parallel implementation achieves an improvement of up to 15 times on a commodity GPU over our efficient single core implementation for a system consisting of 256k particles, with the speedup increasing with the problem size. Furthermore, we describe our methods and strategies for optimising our implementation in detail.