Treffer: Parallel Monte Carlo simulation in the canonical ensemble on the graphics processing unit

Title:
Parallel Monte Carlo simulation in the canonical ensemble on the graphics processing unit
Source:
International journal of parallel, emergent and distributed systems (Print). 29(3-4):379-400
Publisher Information:
Abingdon: Taylor & Francis, 2014.
Publication Year:
2014
Physical Description:
print, 41 ref
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Telecommunications, Télécommunications, Sciences exactes et technologie, Exact sciences and technology, Physique, Physics, Physique atomique et moleculaire, Atomic and molecular physics, Structure électronique des atomes, des molécules et de leurs ions: théorie, Electronic structure of atoms, molecules and their ions: theory, Calculs et techniques mathématiques en physique atomique et moléculaire (sauf les calculs de corrélation électronique), Calculations and mathematical techniques in atomic and molecular physics (excluding electron correlation calculations), Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Logiciel, Software, Traitement des langages et microprogrammation, Language processing and microprogramming, Systèmes informatiques et systèmes répartis. Interface utilisateur, Computer systems and distributed systems. User interface, Intelligence artificielle, Artificial intelligence, Reconnaissance des formes. Traitement numérique des images. Géométrie algorithmique, Pattern recognition. Digital image processing. Computational geometry, Accélérateur, Accelerator, Acelerador, Algorithme parallèle, Parallel algorithm, Algoritmo paralelo, Calcul réparti, Distributed computing, Cálculo repartido, Carte graphique, Graphic processing unit, Unidad de proceso gráfico, Délai d'exécution, Time allowed, Plazo ejecución, Efficacité, Efficiency, Eficacia, Ensemble canonique, Canonical ensemble, Conjunto canónico, Equilibrage charge, Load balancing, Equilibrio de carga, Equité, Equity, Equidad, Grappe calculateur, Calculator cluster, Racimo calculadora, Haute performance, High performance, Alto rendimiento, Modèle Lennard Jones, Lennard Jones model, Modelo Lennard Jones, Modélisation, Modeling, Modelización, Méthode Monte Carlo, Monte Carlo method, Método Monte Carlo, Physique moléculaire, Molecular physics, Física molecular, Résultat expérimental, Experimental result, Resultado experimental, Superordinateur, Supercomputer, Supercomputador, Système réparti, Distributed system, Sistema repartido, Thermodynamique, Thermodynamics, Termodinámica, Traitement parallèle, Parallel processing, Tratamiento paralelo, Unité centrale, Central unit, Unidad central, Compute Unified Device Architecture, Lennard-Jones potential, Monte Carlo simulations, canonical thermodynamic ensemble, graphics processing unit, high-performance computing
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Department of Computer Science, Wayne State University, Detroit, MI 48202, United States
Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI 48202, United States
ISSN:
1744-5760
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Atomic and molecular physics

Computer science; theoretical automation; systems
Accession Number:
edscal.28580537
Database:
PASCAL Archive

Weitere Informationen

Graphics processing units (GPUs) offer parallel computing power that usually requires a cluster of networked computer or a supercomputer to accomplish. While writing kernel code is fairly straightforward, achieving efficiency and performance requires very careful optimisation decisions and changes to the original serial algorithm. We introduce a parallel canonical ensemble Monte Carlo (MC) simulation that runs entirely on the GPU. In this paper, we describe two MC simulation codes of Lennard-Jones particles in the canonical ensemble, a single CPU core and a parallel GPU implementations. Using Compute Unified Device Architecture, the parallel implementation enables the simulation of systems containing over 200,000 particles in a reasonable amount of time, which allows researchers to obtain more accurate simulation results. A remapping algorithm is introduced to balance the load of the device resources and demonstrate by experimental results that the efficiency of this algorithm is bounded by available GPU resource. Our parallel implementation achieves an improvement of up to 15 times on a commodity GPU over our efficient single core implementation for a system consisting of 256k particles, with the speedup increasing with the problem size. Furthermore, we describe our methods and strategies for optimising our implementation in detail.