Serviceeinschränkungen vom 12.-22.02.2026 - weitere Infos auf der UB-Homepage

Treffer: Learning register automata: from languages to program structures

Title:
Learning register automata: from languages to program structures
Source:
Special Issue on Grammatical InferenceMachine learning. 96(1-2):65-98
Publisher Information:
Heidelberg: Springer, 2014.
Publication Year:
2014
Physical Description:
print, 2 p.1/4
Original Material:
INIST-CNRS
Subject Terms:
Cognition, Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Informatique théorique, Theoretical computing, Théorie des langages et analyse syntaxique, Language theory and syntactical analysis, Algorithmique. Calculabilité. Arithmétique ordinateur, Algorithmics. Computability. Computer arithmetics, Logiciel, Software, Génie logiciel, Software engineering, Intelligence artificielle, Artificial intelligence, Abstraction, Abstracción, Algorithme apprentissage, Learning algorithm, Algoritmo aprendizaje, Apprentissage supervisé, Supervised learning, Aprendizaje supervisado, Automate Mealy, Mealy automaton, Autómata Mealy, Grammaire, Grammar, Gramática, Génie logiciel, Software engineering, Ingeniería informática, Indécidabilité, Undecidability, Indecidibilidad, Inférence grammaticale, Grammatical inference, Inferencia gramatical, Intelligence artificielle, Artificial intelligence, Inteligencia artificial, Machine état fini, Finite state machine, Máquina estado finito, Modélisation, Modeling, Modelización, Méthode formelle, Formal method, Método formal, Méthode raffinement, Refinement method, Método afinamiento, Précurseur, Precursor, Structure programme, Program structure, Estructura programa, Système actif, Active system, Sistema activo, Système infini, Infinite system, Sistema infinito, Traitement donnée, Data processing, Tratamiento datos, Traitement signal, Signal processing, Procesamiento señal, Modèle donnée, Data models, Modelo de datos, Active automata learning, Alphabet abstraction refinement, Formal methods, Register automata
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
TU Dortmund, Chair for Programming Systems, Dortmund, Germany
CMU Silicon Valley, Mountain View, CA, United States
ISSN:
0885-6125
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.28595231
Database:
PASCAL Archive

Weitere Informationen

This paper reviews the development of Register Automaton learning, an enhancement of active automata learning to deal with infinite-state systems. We will revisit the precursor techniques and influences, which in total span over more than a decade. A large share of this development was guided and motivated by the increasingly popular application of grammatical inference techniques in the field of software engineering. We specifically focus on a key problem to achieve practicality in this field: the adequate treatment of data values ranging over infinite domains, a major source of undecidability. Starting with the first case studies, in which data was completely abstracted away, we revisit different steps towards dealing with data explicitly at a model level: we discuss Mealy machines as a model for systems with (data) output, automated alphabet abstraction refinement techniques as a two-dimensional extension of the partition-refinement based approach of active automata learning to also inferring optimal alphabet abstractions, and Register Mealy Machines, which can be regarded as programs restricted to data-independent data processing as it is typical for protocols or interface programs. We are convinced that this development will significantly contribute to paving the road for active automata learning to become a technology of high practical importance.