Treffer: Modeling of Batch Processes Using Explicitly Time-Dependent Artificial Neural Networks

Title:
Modeling of Batch Processes Using Explicitly Time-Dependent Artificial Neural Networks
Source:
IEEE transactions on neural networks and learning systems (Print). 25(5):970-979
Publisher Information:
New York, NY: Institute of Electrical and Electronics Engineers, 2014.
Publication Year:
2014
Physical Description:
print, 21 ref
Original Material:
INIST-CNRS
Subject Terms:
Cognition, Electronics, Electronique, Computer science, Informatique, Psychology, psychopathology, psychiatry, Psychologie, psychopathologie, psychiatrie, Sciences exactes et technologie, Exact sciences and technology, Physique, Physics, Generalites, General, Physique statistique, thermodynamique, et systèmes dynamiques non linéaires, Statistical physics, thermodynamics, and nonlinear dynamical systems, Dynamique non linéaire et systèmes dynamiques non linéaires, Nonlinear dynamics and nonlinear dynamical systems, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Intelligence artificielle, Artificial intelligence, Connexionnisme. Réseaux neuronaux, Connectionism. Neural networks, Physicochimie des polymeres, Physicochemistry of polymers, Polymères organiques, Organic polymers, Préparation, cinétique, thermodynamique, mécanisme et catalyseurs, Preparation, kinetics, thermodynamics, mechanism and catalysts, Polymérisation, Polymerization, Algorithme apprentissage, Learning algorithm, Algoritmo aprendizaje, Algorithme rétropropagation, Backpropagation algorithm, Algoritmo retropropagación, Architecture réseau, Network architecture, Arquitectura red, Condition non stationnaire, Non stationary condition, Condición no estacionaria, Dépendance du temps, Time dependence, Dependencia del tiempo, Entrée sortie, Input output, Entrada salida, Fonction activation, Activation function, Función actividad, Fonction polynomiale, Polynomial function, Función polinomial, Indice aptitude, Capability index, Indice aptitud, Intelligence artificielle, Artificial intelligence, Inteligencia artificial, Modèle dynamique, Dynamic model, Modelo dinámico, Modélisation, Modeling, Modelización, Poids, Weight, Peso, Procédé discontinu, Batch process, Procedimiento discontínuo, Réacteur chimique, Chemical reactor, Reactor químico, Réseau neuronal, Neural network, Red neuronal, Système paramètre variable, Time varying system, Sistema parámetro variable, Batch reactor, explicitly time-dependent neural networks, modulation function, nonstationary dynamic modeling, semibatch polymerization reactor
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Process Dynamics and Control Group, Chemical Engineering Division, Indian Institute of Chemical Technology, Hyderabad 500607, India
ISSN:
2162-237X
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Physical chemistry of polymers

Theoretical physics
Accession Number:
edscal.28604019
Database:
PASCAL Archive

Weitere Informationen

A neural network architecture incorporating time dependency explicitly, proposed recently, for modeling nonlinear nonstationary dynamic systems is further developed in this paper, and three alternate configurations are proposed to represent the dynamics of batch chemical processes. The first configuration consists of L subnets, each having M inputs representing the past samples of process inputs and output; each subnet has a hidden layer with polynomial activation function; the outputs of the hidden layer are combined and acted upon by an explicitly time-dependent modulation function. The outputs of all the subnets are summed to obtain the output prediction. In the second configuration, additional weights are incorporated to obtain a more generalized model. In the third configuration, the subnets are eliminated by incorporating an additional hidden layer consisting of L nodes. Backpropagation learning algorithm is formulated for each of the proposed neural network configuration to determine the weights, the polynomial coefficients, and the modulation function parameters. The modeling capability of the proposed neural network configuration is evaluated by employing it to represent the dynamics of a batch reactor in which a consecutive reaction takes place. The results show that all the three time-varying neural networks configurations are able to represent the batch reactor dynamics accurately, and it is found that the third configuration is exhibiting comparable or better performance over the other two configurations while requiring much smaller number of parameters. The modeling ability of the third configuration is further validated by applying to modeling a semibatch polymerization reactor challenge problem. This paper illustrates that the proposed approach can be applied to represent dynamics of any batch/semibatch process.