Treffer: A topic model approach to measuring interdisciplinarity at the National Science Foundation

Title:
A topic model approach to measuring interdisciplinarity at the National Science Foundation
Authors:
Source:
Tech Mining, Analysis, and VisualizationScientometrics (Print). 100(3):741-754
Publisher Information:
Dordrecht: Springer, 2014.
Publication Year:
2014
Physical Description:
print, 3/4 p
Original Material:
INIST-CNRS
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
National Science Foundation, 4201 Wilson Blvd., Arlington, VA 22230, United States
ISSN:
0138-9130
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Sciences of information and communication. Documentation

FRANCIS
Accession Number:
edscal.28700413
Database:
PASCAL Archive

Weitere Informationen

As the National Science Foundation (NSF) implements new cross-cutting initiatives and programs, interest in assessing the success of these experiments in fostering interdisciplinarity grows. A primary challenge in measuring interdisciplinarity is identifying and bounding the discrete disciplines that comprise interdisciplinary work. Using statistical text-mining techniques to extract topic bins, the NSF recently developed a topic map of all of their awards issued between 2000 and 2011. These new data provide a novel means for measuring interdisciplinarity by assessing the language or content of award proposals. Using the Directorate for Social, Behavioral, and Economic Sciences as a case study and drawing on the new topic model of the NSF's awards, this paper explores new methods for quantifying interdisciplinarity in the NSF portfolio.