Treffer: Employing box plots to build high-dimensional manufacturing models for new products in TFT-LCD plants

Title:
Employing box plots to build high-dimensional manufacturing models for new products in TFT-LCD plants
Source:
SI Computational Intelligence Techniques for New Product DevelopmentNeurocomputing (Amsterdam). 142:73-85
Publisher Information:
Amsterdam: Elsevier, 2014.
Publication Year:
2014
Physical Description:
print, 28 ref
Original Material:
INIST-CNRS
Subject Terms:
Cognition, Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Probabilités et statistiques, Probability and statistics, Statistiques, Statistics, Sciences appliquees, Applied sciences, Recherche operationnelle. Gestion, Operational research. Management science, Recherche opérationnelle et modèles formalisés de gestion, Operational research and scientific management, Modèles d'entreprises, Firm modelling, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Intelligence artificielle, Artificial intelligence, Connexionnisme. Réseaux neuronaux, Connectionism. Neural networks, Electronique, Electronics, Matériel informatique, Hardware, Equipements d'entrée-sortie, Input-output equipment, Algorithme rétropropagation, Backpropagation algorithm, Algoritmo retropropagación, Analyse n dimensionnelle, Multidimensional analysis, Análisis n dimensional, Analyse statistique, Statistical analysis, Análisis estadístico, Analyse échange interindustriel, Input-output analysis, Compétitivité, Competitiveness, Competitividad, Cycle développement, Life cycle, Ciclo desarrollo, Développement produit, Product development, Desarrollo producto, Entrée sortie, Input output, Entrada salida, Etude expérimentale, Experimental study, Estudio experimental, Haute résolution, High resolution, Alta resolucion, Lancement produit, Product launching, Lanzamiento producto, Logique floue, Fuzzy logic, Lógica difusa, Modélisation, Modeling, Modelización, Mondialisation, Globalization, Globalización, Petit échantillon, Small sample, Pequeña muestra, Pilote, Pilot, Processus fabrication, Production process, Proceso fabricación, Produit nouveau, New product, Producto nuevo, Prévision, Forecasting, Previsión, Pénétration marché, Market penetration, Penetración mercado, Robustesse, Robustness, Robustez, Réseau neuronal, Neural network, Red neuronal, Système apprentissage, Learning systems, Système n degrés liberté, System with n degrees of freedom, Sistema n grados libertad, Système production, Production system, Sistema producción, Taille échantillon, Sample size, Tamaño muestra, Temps mise en oeuvre, Lead time, Tiempo puesta en marcha, Temps mise en route, Setup time, Tiempo iniciacion, Boîte à moustaches, Box plot, Diagrama de caja, Box plots, Information diffusion, Small dataset, Synthetic sample
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Department of Industrial and Information Management, National Cheng Kung University, Tawain, Province of China
ISSN:
0925-2312
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Electronics

Mathematics

Operational research. Management
Accession Number:
edscal.28753036
Database:
PASCAL Archive

Weitere Informationen

Electronics product life cycles are becoming shorter and shorter because of the severe global competition. In such highly competitive industry, it has become an important strategy to accelerate new products launching to the market to earn more shares. However, the lead times of pilot runs are usually long in new product development (NPD) processes, and reducing pilot runs has thus become one of the key tasks of manufacturing systems. Specifically, since the shorter a test period is the smaller sample size one can obtain, making that to find a small data learning method for a manufacturing system being a new challenge. Facing the problem, this work, based on the box plots and the fuzzy techniques, develops an approach to systematically generate synthetic samples to help stabilize the learning process for the used back-propagation neural network (BPN). A real learning task taken from the Array process of a TFT-LCD manufacturer (a new high-resolution product of 4K2K in 2013) is employed as an example to illustrate the details of the proposed method. The task contains nine inputs and 72 output manufacturing attributes, but only with 20 samples. It is quite difficult for most existing modeling algorithms to deal with such a high dimensional situation when the sample size is small. The experiment results show that the proposed approach can effectively improve the robustness and preciseness of a BPN forecasting model. In addition to the reduction of pilot runs, more process knowledge is obtained in the input-output analysis.