Treffer: A bias-corrected estimator for nonlinear systems with output-error type model structures

Title:
A bias-corrected estimator for nonlinear systems with output-error type model structures
Source:
Automatica (Oxford). 50(9):2373-2380
Publisher Information:
Kidlington: Elsevier, 2014.
Publication Year:
2014
Physical Description:
print, 1/4 p
Original Material:
INIST-CNRS
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Istituto Dalle Molle di Studi sull'Intelligenza Artificiale, Scuola Universitaria Professional della Svizzera Italiana, Galleria 1, 6928 Manno, Switzerland
Control Systems Group, Department of Electrical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, Netherlands
ISSN:
0005-1098
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.28775684
Database:
PASCAL Archive

Weitere Informationen

Parametric identification of linear time-invariant (LTI) systems with output-error (OE) type of noise model structures has a well-established theoretical framework. Different algorithms, like instrumental-variables based approaches or prediction error methods (PEMs), have been proposed in the literature to compute a consistent parameter estimate for linear OE systems. Although the prediction error method provides a consistent parameter estimate also for nonlinear output-error (NOE) systems, it requires to compute the solution of a nonconvex optimization problem. Therefore, an accurate initialization of the numerical optimization algorithms is required, otherwise they may get stuck in a local minimum and, as a consequence, the computed estimate of the system might not be accurate. In this paper, we propose an approach to obtain, in a computationally efficient fashion, a consistent parameter estimate for output-error systems with polynomial nonlinearities. The performance of the method is demonstrated through a simulation example.