Treffer: A bias-corrected estimator for nonlinear systems with output-error type model structures
Control Systems Group, Department of Electrical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, Netherlands
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Weitere Informationen
Parametric identification of linear time-invariant (LTI) systems with output-error (OE) type of noise model structures has a well-established theoretical framework. Different algorithms, like instrumental-variables based approaches or prediction error methods (PEMs), have been proposed in the literature to compute a consistent parameter estimate for linear OE systems. Although the prediction error method provides a consistent parameter estimate also for nonlinear output-error (NOE) systems, it requires to compute the solution of a nonconvex optimization problem. Therefore, an accurate initialization of the numerical optimization algorithms is required, otherwise they may get stuck in a local minimum and, as a consequence, the computed estimate of the system might not be accurate. In this paper, we propose an approach to obtain, in a computationally efficient fashion, a consistent parameter estimate for output-error systems with polynomial nonlinearities. The performance of the method is demonstrated through a simulation example.