Treffer: On the performance of linkage-tree genetic algorithms for the multidimensional knapsack problem : Bridging Machine learning and Evolutionary Computation (BMLEC)

Title:
On the performance of linkage-tree genetic algorithms for the multidimensional knapsack problem : Bridging Machine learning and Evolutionary Computation (BMLEC)
Source:
Neurocomputing (Amsterdam). 146:17-29
Publisher Information:
Amsterdam: Elsevier, 2014.
Publication Year:
2014
Physical Description:
print, 67 ref
Original Material:
INIST-CNRS
Subject Terms:
Cognition, Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Recherche operationnelle. Gestion, Operational research. Management science, Recherche opérationnelle et modèles formalisés de gestion, Operational research and scientific management, Flots dans les réseaux. Problèmes combinatoires, Flows in networks. Combinatorial problems, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Informatique théorique, Theoretical computing, Algorithmique. Calculabilité. Arithmétique ordinateur, Algorithmics. Computability. Computer arithmetics, Intelligence artificielle, Artificial intelligence, Algorithme génétique, Genetic algorithm, Algoritmo genético, Algorithme évolutionniste, Evolutionary algorithm, Algoritmo evoluciónista, Analyse mécanisme, Mechanism analysis, Análisis mecánismo, Apprentissage(intelligence artificielle), Learning (artificial intelligence), Approche probabiliste, Probabilistic approach, Enfoque probabilista, Arbre graphe, Tree(graph), Arbol grafo, Epistasie, Epistasis, Epistasia, Information utile, Useful information, Información útil, Intelligence artificielle, Artificial intelligence, Inteligencia artificial, Modélisation, Modeling, Modelización, Optimisation combinatoire, Combinatorial optimization, Optimización combinatoria, Problème sac à dos, Knapsack problem, Problema mochila, Programmation mathématique, Mathematical programming, Programación matemática, Programmation stochastique, Stochastic programming, Programación estocástica, Résolution problème, Problem solving, Resolución problema, Structure arborescente, Tree structure, Estructura arborescente, Système n dimensions, Multidimensional system, Sistema n dimensiones, Algorithmes à estimation de distribution, Estimation of distribution algorithm, Algoritmo de Estimación de Distribución, Linkage-learning usefulness, Linkage-tree GA, Multidimensional knapsack problem
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
University of São Paulo, Institute of Mathematical and Computer Sciences, São Carlos 13566-590, SP, Brazil
CISUC, Department of Informatics Engineering, University of Coimbra, 3030-290, Portugal
ISSN:
0925-2312
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Operational research. Management
Accession Number:
edscal.28780632
Database:
PASCAL Archive

Weitere Informationen

Model-based Genetic Algorithms (GAs), as the Linkage Tree Genetic Algorithm (LTGA) and most Estimation of Distribution Algorithms (EDAs), assume a reductionist perspective when solving optimization problems. They use machine-learning techniques to discover problem's substructures that might be useful to generate new solutions. This idea was grounded on Simon's near-decomposability principle and Holland's Building Block (BB)-hypothesis, and have enabled the development of effective algorithms in some contexts. Although near-decomposability is commonly seen in nature, we cannot assume the same occurs for optimization problems. Therefore, the existence of problems where these algorithms are not effective is also focus of research. Recent studies have argued that Multidimensional Knapsack Problems (MKPs) are examples of such cases. This paper extends these studies with an extensive comparison of various LTGA variants for the MKP. Using a well-known GA as reference, we analyzed the difficulties faced by the LTGA and explained why its linkage-tree model is not of much help to solve the problem. The results have shown that the LTGA was not able to outperform the GA and performed very similarly to a LTGA using random linkage-models. Further analysis of the linkage-trees, grounded on the knapsack-core concept, enabled interesting conclusions about the reason that linkage-learning did not provide useful information to solve MKPs in the settings used for the experiments.