Treffer: Network Capacity Under Traffic Symmetry: Wireline and Wireless Networks

Title:
Network Capacity Under Traffic Symmetry: Wireline and Wireless Networks
Source:
IEEE transactions on information theory. 60(9):5457-5469
Publisher Information:
New York, NY: Institute of Electrical and Electronics Engineers, 2014.
Publication Year:
2014
Physical Description:
print, 25 ref
Original Material:
INIST-CNRS
Subject Terms:
Telecommunications, Télécommunications, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Telecommunications et theorie de l'information, Telecommunications and information theory, Théorie de l'information, du signal et des communications, Information, signal and communications theory, Théorie de l'information, Information theory, Télécommunications, Telecommunications, Systèmes, réseaux et services de télécommunications, Systems, networks and services of telecommunications, Exploitation, maintenance, fiabilité, Operation, maintenance, reliability, Transmission et modulation (techniques et équipements), Transmission and modulation (techniques and equipments), Radiocommunications, Organisation, exploitation et plans de développement, Organization, operation and development plans, Allocation fréquence, Frequency allocation, Asignación frecuencia, Borne supérieure, Upper bound, Cota superior, Commutation paquet, Packet switching, Conmutación por paquete, Conversion fréquence, Frequency conversion, Conversión frecuencia, Diffusion information, Information dissemination, Difusión información, Diviseur fréquence, Frequency divider, Divisor frecuencia, Débit information, Information rate, Índice información, Multiplexage, Multiplexing, Multiplaje, Méthode combinatoire, Combinatorial method, Método combinatorio, Routage, Routing, Enrutamiento, Réseau sans fil, Wireless network, Red sin hilo, Réseautique, Networking, Conexión en red, Stratégie optimale, Optimal strategy, Estrategia optima, Théorie information, Information theory, Teoría información, Transmission information, Information transmission, Transmisión información, Télécommunication sans fil, Wireless telecommunication, Telecomunicación sin hilo, Codage de réseau, Network coding, wireless networks
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093, United States
Department of Electrical and Engineering Computer Sciences, University of California at Berkeley, Berkeley, CA 94720, United States
Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Champaign, IL 61801, United States
ISSN:
0018-9448
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Telecommunications and information theory
Accession Number:
edscal.28807053
Database:
PASCAL Archive

Weitere Informationen

The problem of designing near optimal strategies for multiple unicast traffic in wireline networks is wide open; however, channel symmetry or traffic symmetry can be lever-aged to show that routing can achieve with a polylogarithmic approximation factor of the edge-cut bound. For the same problem, the edge-cut bound is known to only upper bound rates of routing flows and unlike the information theoretic cut-set bound, it does not upper bound (capacity-achieving) information rates with general strategies. In this paper, we demonstrate that under channel or traffic symmetry, the edge-cut bound upper-bounds general information rates, thus providing a capacity approximation result. The key technique is a combinatorial result relating edge-cut bounds to generalized network sharing bounds. Finally, we generalize the results to wireless networks via an intermediary class of combinatorial graphs known as polymatroidal networks―our main result is that a natural architecture separating the physical and networking layers is near optimal when the traffic is symmetric among source-destination pairs, even when the channel is asymmetric (due to asymmetric power constraints, or prior frequency allocation like frequency division duplexing). This result is complementary to an earlier work of two of the authors proving a similar result under channel symmetry.