Result: Self-organizing maps with information theoretic learning : Advances in Self-Organizing Maps
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Telecommunications and information theory
Further Information
The self-organizing map (SOM) is one of the popular clustering and data visualization algorithms and has evolved as a useful tool in pattern recognition, data mining since it was first introduced by Kohonen. However, it is observed that the magnification factor for such mappings deviates from the information-theoretically optimal value of 1 (for the SOM it is 2/3). This can be attributed to the use of the mean square error to adapt the system, which distorts the mapping by oversampling the low probability regions. In this work. we first discuss the kernel SOM in terms of a similarity measure called correntropy induced metric (CIM) and empirically show that this can enhance the magnification of the mapping without much increase in the computational complexity of the algorithm. We also show that adapting the SOM in the CIM sense is equivalent to reducing the localized cross information potential, an information-theoretic function that quantifies the similarity between two probability distributions. Using this property we propose a kernel bandwidth adaptation algorithm for Gaussian kernels, with both homoscedastic and heteroscedastic components. We show that the proposed model can achieve a mapping with optimal magnification and can automatically adapt the parameters of the kernel function.