Treffer: On-line relational and multiple relational SOM : Advances in Self-Organizing Maps

Title:
On-line relational and multiple relational SOM : Advances in Self-Organizing Maps
Source:
Neurocomputing (Amsterdam). 147:15-30
Publisher Information:
Amsterdam: Elsevier, 2015.
Publication Year:
2015
Physical Description:
print, 67 ref
Original Material:
INIST-CNRS
Subject Terms:
Cognition, Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Logiciel, Software, Systèmes informatiques et systèmes répartis. Interface utilisateur, Computer systems and distributed systems. User interface, Organisation des mémoires. Traitement des données, Memory organisation. Data processing, Traitement des données. Listes et chaînes de caractères, Data processing. List processing. Character string processing, Intelligence artificielle, Artificial intelligence, Apprentissage et systèmes adaptatifs, Learning and adaptive systems, Connexionnisme. Réseaux neuronaux, Connectionism. Neural networks, Algorithme Kohonen, Kohonen algorithm, Algoritmo Kohonen, Algorithme apprentissage, Learning algorithm, Algoritmo aprendizaje, Analyse statistique, Statistical analysis, Análisis estadístico, Approche probabiliste, Probabilistic approach, Enfoque probabilista, Autoorganisation, Self organization, Autoorganización, Combinaison linéaire, Linear combination, Combinación lineal, Conception assistée, Computer aided design, Concepción asistida, Consensus, Consenso, Descente gradient, Gradient descent, Gradient bajada, Donnée catégorielle, Categorical data, Dato categórico, En ligne, On line, En línea, Géométrie euclidienne, Euclidean geometry, Geometría euclidiana, Initialisation, Initialization, Inicialización, Interpolation linéaire, Linear interpolation, Interpolación lineal, Intégration information, Information integration, Integración información, Norme, Standards, Norma, Procédé discontinu, Batch process, Procedimiento discontínuo, Production par lot, Batch production, Producción por lote, Prototype, Prototipo, Rugosité, Roughness, Rugosidad, Réalité virtuelle, Virtual reality, Realidad virtual, Réseau neuronal, Neural network, Red neuronal, Similitude, Similarity, Similitud, Source information, Information source, Fuente información, Système réparti, Distributed system, Sistema repartido, Série temporelle, Time series, Serie temporal, Théorie euclidienne, Euclidean theory, Teoría euclidiana, Categorical time series, Dissimilarity, Graph, Kernel, On-line, Self-Organizing Map
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
SAMM, EA 4543, Université Paris 1, 75634 Paris, France
INRA, UR 875, MIAT, 31326 Castanet-Tolosan, France
ISSN:
0925-2312
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.28836729
Database:
PASCAL Archive

Weitere Informationen

In some applications and in order to address real-world situations better, data may be more complex than simple numerical vectors. In some examples, data can be known only through their pairwise dissimilarities or through multiple dissimilarities, each of them describing a particular feature of the data set. Several variants of the Self-Organizing Map (SOM) algorithm were introduced to generalize the original algorithm to the framework of dissimilarity data. Whereas median SOM is based on a rough representation of the prototypes, relational SOM allows representing these prototypes by a virtual linear combination of all elements in the data set, referring to a pseudo-Euclidean framework. In the present article, an on-line version of relational SOM is introduced and studied. Similar to the situation in the Euclidean framework, this on-line algorithm provides a better organization and is much less sensible to prototype initialization than standard (batch) relational SOM. In a more general case, this stochastic version allows us to integrate an additional stochastic gradient descent step in the algorithm which can tune the respective weights of several dissimilarities in an optimal way: the resulting multiple relational SOM thus has the ability to integrate several sources of data of different types, or to make a consensus between several dissimilarities describing the same data. The algorithms introduced in this paper are tested on several data sets, including categorical data and graphs. On-line relational SOM is currently available in the R package SOMbrero that can be downloaded at http://sombrero.r-forge.r-project.org/ or directly tested on its Web User Interface at http://shiny.nathalievilla.org/sombrero.