Result: Automatic design of interpretable fuzzy predicate systems for clustering using self-organizing maps : Advances in Self-Organizing Maps

Title:
Automatic design of interpretable fuzzy predicate systems for clustering using self-organizing maps : Advances in Self-Organizing Maps
Source:
Neurocomputing (Amsterdam). 147:47-59
Publisher Information:
Amsterdam: Elsevier, 2015.
Publication Year:
2015
Physical Description:
print, 44 ref
Original Material:
INIST-CNRS
Subject Terms:
Cognition, Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Logiciel, Software, Organisation des mémoires. Traitement des données, Memory organisation. Data processing, Traitement des données. Listes et chaînes de caractères, Data processing. List processing. Character string processing, Intelligence artificielle, Artificial intelligence, Connexionnisme. Réseaux neuronaux, Connectionism. Neural networks, Algorithme Kohonen, Kohonen algorithm, Algoritmo Kohonen, Amas, Cluster, Montón, Analyse amas, Cluster analysis, Analisis cluster, Analyse donnée, Data analysis, Análisis datos, Autoorganisation, Self organization, Autoorganización, Classification non supervisée, Unsupervised classification, Clasificación no supervisada, Corps fonction, Function field, Campo función, Découverte connaissance, Knowledge discovery, Descubrimiento conocimiento, Expert, Experto, Fonction appartenance, Membership function, Función pertenencia, Fonction continue, Continuous function, Función continua, Fouille donnée, Data mining, Busca dato, Groupage, Grouping, Agrupamiento, Linguistique, Linguistics, Linguística, Logique floue, Fuzzy logic, Lógica difusa, Partition donnée, Data partition, Partición dato, Précision élevée, High precision, Precisión elevada, Reconnaissance forme, Pattern recognition, Reconocimiento patrón, Réseau neuronal, Neural network, Red neuronal, Structure donnée, Data structure, Estructura datos, Clustering, Degree of truth, Fuzzy predicates, Self-organizing maps
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
Bioengineering Laboratory, Facultad de Ingeniería, Universidad Nacional de Mar del Plata, Juan B. Justo 4302, Mar del Plata B7608FDQ, Argentina
Digital Image Processing Group, Facultad de Ingeniería, Universidad Nacional de Mar del Plata, Juan B. Justo 4302, Mar del Plata B7608FDQ, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Argentina
ISSN:
0925-2312
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.28836731
Database:
PASCAL Archive

Further Information

In the area of pattern recognition, clustering algorithms are a family of unsupervised classifiers designed with the aim to discover unrevealed structures in the data. While this is a never ending research topic, many methods have been developed with good theoretical and practical properties. One of such methods is based on self organizing maps (SOM), which have been successfully used for data clustering, using a two levels clustering approach. Newer on the field, clustering systems based on fuzzy logic improve the performance of traditional approaches. In this paper we combine both approaches. Most of the previous works on fuzzy clustering are based on fuzzy inference systems, but we propose the design of a new clustering system in which we use predicate fuzzy logic to perform the clustering task, being automatically designed based on data. Given a datum, degrees of truth of fuzzy predicates associated with each cluster are computed using continuous membership functions defined over data features. The predicate with the maximum degree of truth determines the cluster to be assigned. Knowledge is discovered from data, obtained using the SOM generalization aptitude and taking advantage of the well-known SOM abilities to discover natural data grouping when compared with direct clustering. In addition, the proposed approach adds linguistic interpretability when membership functions are analyzed by a field expert. We also present how this approach can be used to deal with partitioned data. Results show that clustering accuracy obtained is high and it outperforms other methods in the majority of datasets tested.