Result: Stylistics analysis and authorship attribution algorithms based on self-organizing maps : Advances in Self-Organizing Maps

Title:
Stylistics analysis and authorship attribution algorithms based on self-organizing maps : Advances in Self-Organizing Maps
Source:
Neurocomputing (Amsterdam). 147:147-159
Publisher Information:
Amsterdam: Elsevier, 2015.
Publication Year:
2015
Physical Description:
print, 51 ref
Original Material:
INIST-CNRS
Subject Terms:
Cognition, Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Logiciel, Software, Organisation des mémoires. Traitement des données, Memory organisation. Data processing, Traitement des données. Listes et chaînes de caractères, Data processing. List processing. Character string processing, Intelligence artificielle, Artificial intelligence, Reconnaissance et synthèse de la parole et du son. Linguistique, Speech and sound recognition and synthesis. Linguistics, Connexionnisme. Réseaux neuronaux, Connectionism. Neural networks, Algorithme Kohonen, Kohonen algorithm, Algoritmo Kohonen, Analyse algorithme, Algorithm analysis, Análisis algoritmo, Analyse donnée, Data analysis, Análisis datos, Analyse stylistique, Stylistic analysis, Análisis estilístico, Auteur, Author, Autor, Autoorganisation, Self organization, Autoorganización, Classification, Clasificación, Critère sélection, Selection criterion, Criterio selección, Indice aptitude, Capability index, Indice aptitud, Linguistique mathématique, Computational linguistics, Linguística matemática, Littérature, Literature, Literatura, Méthodologie, Methodology, Metodología, Observation aberrante, Outlier, Observación aberrante, Paternité, Paternity, Paternidad, Réseau neuronal, Neural network, Red neuronal, Texte, Text, Texto, Visualisation, Visualization, Visualización, Anomaly detection, Authorship attribution, Computational stylistics, Feature selection, Self-organizing maps
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
Complex Systems Group, Universidad Autónoma de la Ciudad de México, San Lorenzo 290, México, D.F., Mexico
Institute for Molecular Medicine Finland, Tukholmankatu 5, 00270 Helsinki, Finland
Faculty of Telematics, Universidad de Colima, Mexico
CINVESTAV IDS, México D.F., Mexico
Postgraduate Program in Complex Systems, Universidad Autónoma de la Ciudad de México, Mexico
Faculty of Literary Creation, Universidad Autónoma de la Ciudad de México, Mexico
ISSN:
0925-2312
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.28836739
Database:
PASCAL Archive

Further Information

The style followed by authors can be thought of as a collection of attributes that defines the stylistics space. Texts from the same author tend to be similar in that space. However, the identification of stylistics spaces has proven to be challenging. Associated with the stylistics space is the authorship attribution task. On it, a text of unknown authorship is presented to a system, and the system is expected to identify the author of the text. Two modules define an authorship attribution algorithm: the stylistics space and a classifier. We present a methodology that includes both, a module that allows the identification of novel stylistics spaces, and a classifier to confront the authorship attribution task from the features that define space. The methodology imbricates feature selection, anomaly detection, classification, and visualization algorithms. We applied the capabilities of self-organizing maps not only for visualization but also for anomaly detection, which defines the basis of the classifier. We compared our authorship attribution algorithm with two existing ones. Our methodology achieved similar or better results under bag-o/-words-related stylistics spaces, and it presented the lowest error under a novel stylistics space based on the rate of introduction of new words.