Result: An alternative way of presenting statistical test results when evaluating the performance of stochastic approaches
School of Design, Communication and Information Technology, The University of Newcastle, Callaghan, NSW 2308, Australia
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Operational research. Management
Further Information
Stochastic approaches such as evolutionary algorithms have been widely used in various science and engineering problems. When comparing the performance of a set of stochastic algorithms, it is necessary to statistically evaluate which algorithms are the most suitable for solving a given problem. The outcome of statistical tests comparing N ≥ 2 processes, where N is the number of algorithms, is often presented in tables. This can become confusing for larger numbers of N. Such a scenario is, however, very common in both numerical and combinatorial optimization as well as in the domain of stochastic algorithms in general. In this letter, we introduce an alternative way of visually presenting the results of statistical tests for multiple processes in a compact and easy-to-read manner using a directed acyclic graph (DAG), in the form of a simplified Hasse diagram. The rationale of doing so is based on the fact that the outcome of the tests is always at least a strict partial order, which can be appropriately presented via a DAG. The goal of this brief communication is to promote the use of this approach as a means for presenting the results of comparisons between different optimization methods.