Result: Port throughput forecasting by MARS-RSVR with chaotic simulated annealing particle swarm optimization algorithm

Title:
Port throughput forecasting by MARS-RSVR with chaotic simulated annealing particle swarm optimization algorithm
Source:
Neurocomputing (Amsterdam). 147:239-250
Publisher Information:
Amsterdam: Elsevier, 2015.
Publication Year:
2015
Physical Description:
print, 70 ref
Original Material:
INIST-CNRS
Subject Terms:
Cognition, Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Probabilités et statistiques, Probability and statistics, Statistiques, Statistics, Inférence linéaire, régression, Linear inference, regression, Sciences appliquees, Applied sciences, Generalites, General aspects, Economie, Economics, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Informatique théorique, Theoretical computing, Algorithmique. Calculabilité. Arithmétique ordinateur, Algorithmics. Computability. Computer arithmetics, Transports terrestres, transports aeriens, transports maritimes, constructions navales, Ground, air and sea transportation, marine construction, Transports et trafic maritimes et fluviaux, Marine and water way transportation and traffic, Algorithme évolutionniste, Evolutionary algorithm, Algoritmo evoluciónista, Analyse régression, Regression analysis, Análisis regresión, Approximation spline, Spline approximation, Aproximación esplín, Chaos, Caos, Classification à vaste marge, Vector support machine, Máquina ejemplo soporte, Donnée statistique, Statistical data, Dato estadístico, Donnée économique, Economic data, Dato económico, Dynamique processus, Process dynamics, Dinámica proceso, Effet non linéaire, Non linear effect, Efecto no lineal, Faisabilité, Feasibility, Practicabilidad, Histoire, History, Historia, Intelligence en essaim, Swarm intelligence, Inteligencia de enjambre, Modèle prévision, Forecast model, Modelo previsión, Modèle régression, Regression model, Modelo regresión, Modélisation, Modeling, Modelización, Méthode adaptative, Adaptive method, Método adaptativo, Méthode vectorielle, Vector method, Método vectorial, Optimisation PSO, Particle swarm optimization, Optimización PSO, Point singulier, Singular point, Punto singular, Port, Harbor, Puerto, Prévision, Forecasting, Previsión, Recuit simulé, Simulated annealing, Recocido simulado, Résultat expérimental, Experimental result, Resultado experimental, Socioéconomie, Socioeconomics, Socioeconomía, Système chaotique, Chaotic systems, Système incertain, Uncertain system, Sistema incierto, Système multivariable, Multivariable system, Sistema multivariable, Chaotic mapping, Particle swarm optimization (PSO), Port throughput, Robust v-support vector regression (RSVR), Simulated annealing (SA)
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
College of Shipbuilding Engineering, Harbin Engineering, University, Harbin 150001, Heilongjiang, China
Department of Healthcare Administration, Oriental Institute of Technology, No. 58, Sec. 2, Sichuan Rd., Panchiao, New Taipei, Tawain, Province of China
ISSN:
0925-2312
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Building. Public works. Transport. Civil engineering

Computer science; theoretical automation; systems

Economy. Legislation. Training. Society

Mathematics
Accession Number:
edscal.28836747
Database:
PASCAL Archive

Further Information

Port throughput forecasting is a very complex nonlinear dynamic process, prediction accuracy is influenced by uncertainty of socio-economic factors, especially by the mixed noise (singular point) produced in the collection, transfer and calculation of statistical data; consequently, it is difficult to obtain a satisfactory port throughput forecasting result. Thus, establishing an effective port throughput forecasting scheme is still a significant research issue. Since the robust v-support vector regression model (RSVR) has the ability to solve the nonlinear and mixed noise in the port throughput history data and its related socio-economic factors, this paper introduces the RSVR model to forecast port throughput. In order to search the more appropriate parameters combination for the RSVR model, considering the proposed simulated annealing particle swarm optimization (SAPSO) algorithm and the original PSO algorithm still have the drawbacks of immature convergence and is time consuming, this study presents chaotic simulated annealing particle swarm optimization(CSAPSO) algorithm to determine the parameter combination. Aiming to identify the final input vectors for RSVR model, the multivariable adaptive regression splines (MARS) is adopted to select the final input vectors from the candidate input variables. This study eventually proposes a port throughput forecasting scheme that hybridizes the RSVR, CSAPSO and MARS to obtain a more accurate forecasting result. Subsequently, this study compiles the port throughput data and the corresponding socio-economic indicators data of Shanghai as the illustrative example to evaluate the feasibility and performance of the proposed scheme. The experimental results indicate that the proposed port throughput forecasting scheme obtains better forecasting result than the six competing models in terms of forecasting error.