Result: Identification and quantification of concurrent control chart patterns using extreme-point symmetric mode decomposition and extreme learning machines

Title:
Identification and quantification of concurrent control chart patterns using extreme-point symmetric mode decomposition and extreme learning machines
Source:
Neurocomputing (Amsterdam). 147:260-270
Publisher Information:
Amsterdam: Elsevier, 2015.
Publication Year:
2015
Physical Description:
print, 50 ref
Original Material:
INIST-CNRS
Subject Terms:
Cognition, Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Recherche operationnelle. Gestion, Operational research. Management science, Recherche opérationnelle et modèles formalisés de gestion, Operational research and scientific management, Gestion des stocks, gestion de la production. Distribution, Inventory control, production control. Distribution, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Logiciel, Software, Organisation des mémoires. Traitement des données, Memory organisation. Data processing, Traitement des données. Listes et chaînes de caractères, Data processing. List processing. Character string processing, Intelligence artificielle, Artificial intelligence, Connexionnisme. Réseaux neuronaux, Connectionism. Neural networks, Algorithme apprentissage, Learning algorithm, Algoritmo aprendizaje, Apprentissage(intelligence artificielle), Learning (artificial intelligence), Carte contrôle, Control chart, Carta control, Classification à vaste marge, Vector support machine, Máquina ejemplo soporte, Extremum, Extremo, Identification système, System identification, Identificación sistema, Intelligence artificielle, Artificial intelligence, Inteligencia artificial, Maîtrise statistique processus, Statistical process control, Control estadístico proceso, Modélisation, Modeling, Modelización, Point contrôle, Control point, Punto control, Processus fabrication, Production process, Proceso fabricación, Procédé fabrication, Manufacturing process, Procedimiento fabricación, Quantification, Quantization, Cuantificación, Reconnaissance forme, Pattern recognition, Reconocimiento patrón, Réseau neuronal, Neural network, Red neuronal, Figure chartiste, Chart pattern, Figura chartista, Machine d'apprentissage extrême, Extreme learning machine, Máquina de Aprendizado Extremo, Réseau neuronal non bouclé, Feedforward neural nets, Red neural unidireccional, Extreme-point symmetric mode decomposition
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
School of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Nanjing Surveying and Mapping Instrument Factory, Nanjing 210003, China
ISSN:
0925-2312
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Operational research. Management
Accession Number:
edscal.28836749
Database:
PASCAL Archive

Further Information

Control chart pattern recognition (CCPR) is an important issue in statistical process control because unnatural control chart patterns (CCPs) exhibited on control charts can be associated with specific causes that adversely affect the manufacturing processes. In recent years, many machine learning techniques [e.g., artificial neural networks (ANNs) and support vector machines (SVMs)] have been successfully applied to CCPR. However, such existing research for CCPR has mostly been developed for identification of basic CCPs. Little attention has been given to the utilization of ANNs/SVMs for identification of concurrent CCPs (two or more basic CCPs occurring simultaneously) which are commonly encountered in practical manufacturing processes. In addition, these existing research for CCPR cannot provide more detailed CCP parameter information, such as shift magnitude, trend slope, cycle amplitude, etc., which is very useful for quality practitioners to search the assignable causes that give rise to the out-of-control situation. This study proposes a hybrid approach that integrates extreme-point symmetric mode decomposition (ESMD) with extreme learning machine (ELM) to identify typical concurrent CCPs and in addition to accurately quantify the major CCP parameter of the specific basic CCPs involved. The numerical results indicate that the proposed model can effectively identify not only concurrent CCPs but also basic CCPs. Meanwhile, the major CCP parameter of the identified concurrent CCP can also be accurately quantified.