Result: Noise-free representation based classification and face recognition experiments

Title:
Noise-free representation based classification and face recognition experiments
Source:
Neurocomputing (Amsterdam). 147:307-314
Publisher Information:
Amsterdam: Elsevier, 2015.
Publication Year:
2015
Physical Description:
print, 51 ref
Original Material:
INIST-CNRS
Subject Terms:
Cognition, Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Generalites, General aspects, Formation professionnelle. Personnel. Organisation du travail, Occupational training. Personnel. Work management, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Logiciel, Software, Organisation des mémoires. Traitement des données, Memory organisation. Data processing, Traitement des données. Listes et chaînes de caractères, Data processing. List processing. Character string processing, Intelligence artificielle, Artificial intelligence, Reconnaissance des formes. Traitement numérique des images. Géométrie algorithmique, Pattern recognition. Digital image processing. Computational geometry, Analyse n dimensionnelle, Multidimensional analysis, Análisis n dimensional, Effet bord, Edge effect, Efecto borde, Faciès, Facies, Haute performance, High performance, Alto rendimiento, Mimique, Facial expression, Mímica, Réalité virtuelle, Virtual reality, Realidad virtual, Réduction bruit, Noise reduction, Reducción ruido, Résultat expérimental, Experimental result, Resultado experimental, Traitement image, Image processing, Procesamiento imagen, Téléenseignement, Remote teaching, Teleensenanza, Vision ordinateur, Computer vision, Visión ordenador, Classification forme, Pattern classification, Clasificación de patrones, Reconnaissance visage, Face recognition, Reconocimiento de cara, Noise elimination, Representation based classification
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
Bio-Computing Research Center, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, China
Key Laboratory of Network Oriented Intelligent Computation, Shenzhen, China
Department of Computing, The Hong Kong Polytechnic University, Hong-Kong
Shenzhen Sunwin Intelligent Corporation, Shenzhen, China
Engineering Lab on Intelligent Perception for Internet of Things, Shenzhen Graduate School, Peking University, Shenzhen, China
ISSN:
0925-2312
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Economy. Legislation. Training. Society
Accession Number:
edscal.28836754
Database:
PASCAL Archive

Further Information

The representation based classification has achieved promising performance in high-dimensional pattern classification problems. As we know, in real-world applications the samples are usually corrupted by noise. However, representation based classification can take only noise in the test sample into account and is not able to deal with noise in the training sample, which causes side-effect on the classification result. In order to make the representation based classification more suitable for real-world applications such as face recognition, we propose a new representation based classification method in this paper. This method can effectively and simultaneously reduce noise in the test and training samples. Moreover, the proposed method can reduce noise in both the original and virtual training samples and then exploits them to determine the label of the test sample. The virtual training sample is generated from the original face image and shows possible variation of the face in scale, facial pose and expression. The experimental results show that the proposed method performs very well in face recognition.