Treffer: Double layer multiple task learning for age estimation with insufficient training samples

Title:
Double layer multiple task learning for age estimation with insufficient training samples
Source:
Neurocomputing (Amsterdam). 147:380-386
Publisher Information:
Amsterdam: Elsevier, 2015.
Publication Year:
2015
Physical Description:
print, 23 ref
Original Material:
INIST-CNRS
Subject Terms:
Cognition, Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Logiciel, Software, Organisation des mémoires. Traitement des données, Memory organisation. Data processing, Traitement des données. Listes et chaînes de caractères, Data processing. List processing. Character string processing, Intelligence artificielle, Artificial intelligence, Apprentissage et systèmes adaptatifs, Learning and adaptive systems, Reconnaissance des formes. Traitement numérique des images. Géométrie algorithmique, Pattern recognition. Digital image processing. Computational geometry, Age, Edad, Algorithme apprentissage, Learning algorithm, Algoritmo aprendizaje, Apprentissage inductif, Inductive learning, Aprendizaje por inducción, Classification à vaste marge, Vector support machine, Máquina ejemplo soporte, Estimation ponctuelle, Point estimation, Estimación puntual, Faciès, Facies, Logique sens commun, Common sense logic, Lógica sentido común, Modélisation, Modeling, Modelización, Multitâche, Multithread, Multitarea, Méthode noyau, Kernel method, Método núcleo, Personnalisation, Customization, Personalización, Résultat expérimental, Experimental result, Resultado experimental, Transfert des connaissances, Knowledge transfer, Transferencia conocimiento, Age estimation, Facial images, Insufficient sample problem, Multi-task learning, Multiple kernel learning, Support vector machine
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, China
Department of Computer Science, Tokyo Institute of Technology, Japan
ISSN:
0925-2312
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.28836763
Database:
PASCAL Archive

Weitere Informationen

One of the main difficulty of facial age estimation is the lack of training sample problem. In this paper, we point out that when age estimation is treated as a multiple task learning (MTL) problem, the impact of training sample problem can be relieved. By this idea, we re-formulate the age estimation task using the multi-class score function and develop a double layer multiple task learning (DLMTL) approach. In the subject layer, the personalized age estimation models as well as the global model are used to share knowledge of common aging pattern among different subjects; in the age label layer, the sub-tasks of score function estimation on any specific age label are further modeled to fully exploit the sequential information along the age axis. The proposed DLMTL model can be formulated into a very concise inner product representation, and it is finally solved using the multiple kernel learning (MKL) tool. The experimental results upon the FG-NET and MORPH aging databases verified that our method outperforms many other popular age estimation algorithms especially for the extremely training sample insufficient applications.