Result: Wavelet kernel entropy component analysis with application to industrial process monitoring
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Mechanical engineering. Mechanical construction. Handling
Telecommunications and information theory
Further Information
Aiming at the features that modem industrial processes always have some characteristics of complexity and nonlinearity and the process data usually contain both Gaussion and non-Gaussion information at the same time, a new process performance monitoring and fault detection method based on wavelet transform and kernel entropy component analysis (WT-KECA) is proposed in this paper. Unlike other kernel feature extraction methods, this method chooses the best principal component vectors according to the maximal Renyi entropy rather than judging by the top eigenvalues and eigenvectors of the kernel matrix simply. Besides, it can denoise and anti-disturb due to the application of wavelet transform. The proposed method is applied to process monitoring in the Tennessee Eastman (TE) process and the fault identification is realized. The simulation results indicate that the proposed method is more feasible and efficient in comparing to KPCA method.