Result: Sparsely encoded local descriptor for face verification

Title:
Sparsely encoded local descriptor for face verification
Source:
Neurocomputing (Amsterdam). 147:403-411
Publisher Information:
Amsterdam: Elsevier, 2015.
Publication Year:
2015
Physical Description:
print, 47 ref
Original Material:
INIST-CNRS
Subject Terms:
Cognition, Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Logiciel, Software, Organisation des mémoires. Traitement des données, Memory organisation. Data processing, Traitement des données. Listes et chaînes de caractères, Data processing. List processing. Character string processing, Intelligence artificielle, Artificial intelligence, Reconnaissance des formes. Traitement numérique des images. Géométrie algorithmique, Pattern recognition. Digital image processing. Computational geometry, Algorithme k moyenne, K means algorithm, Algoritmo k media, Analyse composante principale, Principal component analysis, Análisis componente principal, Analyse régression, Regression analysis, Análisis regresión, Banque image, Image databank, Banco imagen, Classification, Clasificación, Code bloc, Block code, Código bloque, Compétitivité, Competitiveness, Competitividad, Dictionnaire, Dictionaries, Diccionario, Dimensionnalité, Dimensionality, Dimensionalidad, Décomposition valeur singulière, Singular value decomposition, Decomposición valor singular, Extraction forme, Pattern extraction, Extracción forma, Faciès, Facies, Géométrie algorithmique, Computational geometry, Geometría computacional, Modèle linéaire, Linear model, Modelo lineal, Modèle régression, Regression model, Modelo regresión, Quantification signal, Signal quantization, Cuantificación señal, Représentation parcimonieuse, Sparse representation, Representación parsimoniosa, Régression linéaire, Linear regression, Regresión lineal, Résultat expérimental, Experimental result, Resultado experimental, Traitement image, Image processing, Procesamiento imagen, Codage parcimonieux, Sparse coding, Código parsimonioso, Reconnaissance visage, Face recognition, Reconocimiento de cara, Face verification, Labeled faces in the wild, Local descriptor, Non-negativity
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing 100190, China
School of Computer Science and Technology, Huaqiao University, Xiamen 361021, China
Department of Computing, The Hong Kong Polytechnic University, Hong-Kong
ISSN:
0925-2312
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.28836766
Database:
PASCAL Archive

Further Information

A novel Sparsely Encoded Local Descriptor (SELD) is proposed for face verification. Different from traditional hard or soft quantization methods, we exploit linear regression (LR) model with sparsity and non-negativity constraints to extract more discriminative features (i.e. sparse codes) from local image patches sampled pixel-wisely. Sum-pooling is then imposed to integrate all the sparse codes within each block partitioned from the whole face image. Whitened Principal Component Analysis (WPCA) is finally used to suppress noises and reduce the dimensionality of the pooled features, which thus results in the so-called SELD. To validate the proposed method, comprehensive experiments are conducted on face verification task to compare SELD with the existing related methods in terms of three variable component modules: K-means or K-SVD for dictionary learning, hard/soft assignment or regression model for encoding, as well as sum-pooling or max-pooling for pooling. Experimental results show that our method achieves a competitive accuracy compared with the state-of-the-art methods on the challenging Labeled Faces in the Wild (LFW) database.