Treffer: Constrained Semi-Supervised Growing Self-Organizing Map

Title:
Constrained Semi-Supervised Growing Self-Organizing Map
Source:
Neurocomputing (Amsterdam). 147:456-471
Publisher Information:
Amsterdam: Elsevier, 2015.
Publication Year:
2015
Physical Description:
print, 49 ref
Original Material:
INIST-CNRS
Subject Terms:
Cognition, Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Informatique théorique, Theoretical computing, Algorithmique. Calculabilité. Arithmétique ordinateur, Algorithmics. Computability. Computer arithmetics, Logiciel, Software, Systèmes informatiques et systèmes répartis. Interface utilisateur, Computer systems and distributed systems. User interface, Organisation des mémoires. Traitement des données, Memory organisation. Data processing, Traitement des données. Listes et chaînes de caractères, Data processing. List processing. Character string processing, Intelligence artificielle, Artificial intelligence, Connexionnisme. Réseaux neuronaux, Connectionism. Neural networks, Algorithme Kohonen, Kohonen algorithm, Algoritmo Kohonen, Algorithme apprentissage, Learning algorithm, Algoritmo aprendizaje, Algorithme en ligne, Online algorithm, Algoritmo en línea, Amas, Cluster, Montón, Analyse amas, Cluster analysis, Analisis cluster, Analyse donnée, Data analysis, Análisis datos, Autoorganisation, Self organization, Autoorganización, Bilinguisme, Bilingualism, Bilingüismo, Classification, Clasificación, Multilinguisme, Multilingualism, Multilingüismo, Méthode itérative, Iterative method, Método iterativo, Métrique, Metric, Métrico, Phrase, Sentence, Frase, Procédé discontinu, Batch process, Procedimiento discontínuo, Réseau neuronal, Neural network, Red neuronal, Résultat expérimental, Experimental result, Resultado experimental, Taille échantillon, Sample size, Tamaño muestra, Transmission en continu, Streaming, Transmisión fluyente, Apprentissage non supervisé, Unsupervised learning, Aprendizaje no supervisado, Apprentissage semi-supervisé, Semi-supervised learning, Aprendizaje semi-supervisado, Exécution croisée de code, Cross-site scripting, Secuencias de comandos en sitios cruzados, Mondes possibles et impossibles, Possible and impossible worlds, Mundos posibles e imposibles, Bregman's projection, Constrained clustering, Metric learning, Online learning, Semi-supervised Self-Organizing Map
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Department of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, Iran, Islamic Republic of
Center of Excellence on Soft Computing and Intelligent Information Processing, Ferdowsi University of Mashhad, Iran, Islamic Republic of
ISSN:
0925-2312
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.28836771
Database:
PASCAL Archive

Weitere Informationen

Semi-supervised clustering tries to surpass the limits of unsupervised clustering using extra information contained in occasional labeled data points. However, providing such labeled samples is not always possible or easy in real world applications. A weaker, yet still very useful option is providing constraints on the unlabeled training samples, which is the focus of the Constrained Semi-Supervised (CSS) clustering. On the other hand, online learning has gained considerable amount of interests in real world problems with massive sample size or streaming behavior, as lack of memory and computational resources seriously restrict the application of the offline and batch methods. However, the existing algorithms for online CSS clustering problem either assumed that the entire dataset is available and added constraints incrementally or considered chunks of constrained data points and applied an offline CSS clustering algorithm. Thus, none of them can be categorized as a genuine online CSS clustering algorithm. In this paper, we propose CS2GS, an online CSS clustering algorithm. CS2GS is constructed by modifying the online learning process of Semi-Supervised Growing Self-Organizing Map, and converting it to an iterative constrained metric learning problem that can be solved using the Bregman's iterative projections. The proposed CS2GS is studied via a series of thorough tests using synthetic and real data including selections from UCI datasets and FEP - a recent bilingual corpus used for sentence aligning stage of machine translation. Experimental results show the effectiveness of CS2GS in online CSS clustering, and prove that indeed, the limits of the system accuracy may be pushed higher using unlabeled samples.