Result: A regularized optimization framework for tag completion and image retrieval

Title:
A regularized optimization framework for tag completion and image retrieval
Source:
Neurocomputing (Amsterdam). 147:500-508
Publisher Information:
Amsterdam: Elsevier, 2015.
Publication Year:
2015
Physical Description:
print, 32 ref
Original Material:
INIST-CNRS
Subject Terms:
Cognition, Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Logiciel, Software, Systèmes informatiques et systèmes répartis. Interface utilisateur, Computer systems and distributed systems. User interface, Intelligence artificielle, Artificial intelligence, Reconnaissance des formes. Traitement numérique des images. Géométrie algorithmique, Pattern recognition. Digital image processing. Computational geometry, Adultération, Adulteration, Adulteración, Complétude, Completeness, Completitud, Contenu image, Image content, Contenido imagen, Etiquetage, Labelling, Etiquetaje, Factorisation matricielle, Matrix factorization, Factorizacion matricial, Galerie, Gallery, Galería, Image numérique, Digital image, Imagen numérica, Indexation, Indexing, Indización, Internet, Matrice non négative, Non negative matrix, Matriz no negativa, Minimisation, Minimization, Minimización, Mot clé, Keyword, Palabra clave, Optimisation, Optimization, Optimización, Pertinence, Relevance, Pertinencia, Représentation parcimonieuse, Sparse representation, Representación parsimoniosa, Réalité terrain, Ground truth, Realidad terreno, Réseau social, Social network, Red social, Site Web, Web site, Sitio Web, Sémantique, Semantics, Semántica, Vision ordinateur, Computer vision, Visión ordenador, Holisme, Holism, Holismo, Recherche image, Image retrieval, Búsqueda de imagen, Recherche par contenu, Content-based retrieval, Búsqueda por Contenidos, Non-negative matrix factorization, Social image, Tag completion, Visual diversity
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
School of Electronics and Information, Northwestern Polytechnical University, Shaanxi 710129, China
Department of Computer Science, The University of North Carolina at Charlotte, NC28223, United States
ISSN:
0925-2312
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.28836775
Database:
PASCAL Archive

Further Information

With the fast expansion of social image sharing websites, the tag-based image retrieval (TBIR) becomes important and prevalent for Internet users to search the social images. However, some user-provided tags of social images are too incomplete and ambiguous to facilitate the social image retrieval. In this paper, we propose a regularized optimization framework to complete the missing tags for social images (tag completion). Within the regularized optimization framework, the non-negative matrix factorization (NMF) and the holistic visual diversity minimization are used jointly to make the tag-image matrix completed as the relationships of images and tags are represented to a tag-image matrix. The non-negative matrix factorization casts the tag-image matrix into a latent low-rank space and utilizes the semantic relevance of tags to partially complete the insufficient tags. To take the visual content of images into account, the other objective term representing the holistic visual diversity is appended with the NMF to leverage the content-similar images. Moreover, to ensure the proper corrections and sparseness of tag-image matrix, two regularized factors are also included into the optimization framework. Through conducting the experiments on the benchmark image set with the adequate ground truth, we verify the effectiveness of our proposed approach.