Treffer: Performance evaluation of the correntropy coefficient in automatic modulation classification
Computational Neuroengineering Laboratory (CNEL), Department of ECE, University of Florida, Gainesville, FL 32611, United States
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Telecommunications and information theory
Weitere Informationen
Automatic modulation classification (AMC) techniques have applications in a variety of wireless communication scenarios, such as adaptive systems, cognitive radio, and surveillance systems. However, a common requirement to most of the AMC techniques proposed in the literature is the use of signal preprocessing modules, which can increase the computational cost and decrease the scalability of the AMC strategy. This work proposes the direct use of a similarity measure based on information theory for the automatic recognition of digital modulations, which is known as correntropy coefficient. The performance of correntropy in AMC applied to channels subject to additive white Gaussian noise (AWGN) is evaluated. Specifically, the influence of the kernel size on the classifier performance is analyzed, since it is the only free parameter in correntropy. Besides, a relationship between its respective value and the signal-to-noise ratio (SNR) of the channel is also proposed. Considering the investigated modulation techniques, numerical results obtained by simulation demonstrate that there are high accuracy rates in classification, even at low SNR values. By using correntropy, AMC task becomes simpler and more efficient.