Treffer: A vibration cavitation sensitivity parameter based on spectral and statistical methods
CRC for Infrastructure and Engineering Asset Management, GPO Box 2434, Brisbane, QLD 4001, Australia
School of Mechanical and Chemical Engineering, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Physics: acoustics
Physics: fluid mechanics
Physics: solid mechanics
Weitere Informationen
Cavitation is one of the main problems reducing the longevity of centrifugal pumps in industry today. If the pump operation is unable to maintain operating conditions around the best efficiency point, it can be subject to conditions that may lead to vaporisation or flashing in the pipes upstream of the pump. The implosion of these vapour bubbles in the impeller or volute causes damaging effects to the pump. A new method of vibration cavitation detection is proposed in this paper, based on adaptive octave band analysis, principal component analysis and statistical metrics. Full scale industrial pump efficiency testing data was used to determine the initial cavitation parameters for the analysis. The method was then tested using vibration measured from a number of industry pumps used in the water industry. Results were compared to knowledge known about the state of the pump, and the classification of the pump according to ISO 10816.