Treffer: Sparse multi-stage regularized feature learning for robust face recognition
Department of Mathematics, University of Houston, Houston, TX 77204, United States
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Telecommunications and information theory
Weitere Informationen
The major limitation in current facial recognition systems is that they do not perform very well in uncontrolled environments, that is, when faces present variations in pose, illumination, facial expressions and environment. This is a serious obstacle in applications such as law enforcement and surveillance systems. To address this limitation, in this paper we introduce an improved approach to ensure robust face recognition, that relies on two innovative ideas. First, we apply a new multiscale directional framework, called Shearlet Network (SN), to extract facial features. The advantage of this approach comes from the highly sparse representation properties of the shearlet framework that is especially designed to robustly extract the fundamental geometric content of an image. Second, we apply a refinement of the Multi-Task Sparse Learning (MTSL) framework to exploit the relationships among multiple shared tasks generated by changing the regularization parameter during the recognition stage. We provide extensive numerical tests to show that our Sparse Multi-Regularized Shearlet Network (SMRSN) algorithm performs very competitively when compared against different state-of-the-art methods on different experimental protocols, including face recognition in uncontrolled conditions and single-sample-per-person.