Treffer: Sparse multi-stage regularized feature learning for robust face recognition

Title:
Sparse multi-stage regularized feature learning for robust face recognition
Source:
Expert systems with applications. 42(1):269-279
Publisher Information:
Amsterdam: Elsevier, 2015.
Publication Year:
2015
Physical Description:
print, 3/4 p
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Intelligence artificielle, Artificial intelligence, Apprentissage et systèmes adaptatifs, Learning and adaptive systems, Reconnaissance des formes. Traitement numérique des images. Géométrie algorithmique, Pattern recognition. Digital image processing. Computational geometry, Telecommunications et theorie de l'information, Telecommunications and information theory, Théorie de l'information, du signal et des communications, Information, signal and communications theory, Théorie du signal et des communications, Signal and communications theory, Signal, bruit, Signal, noise, Détection, estimation, filtrage, égalisation, prédiction, Detection, estimation, filtering, equalization, prediction, Apprentissage inductif, Inductive learning, Aprendizaje por inducción, Contenu image, Image content, Contenido imagen, Eclairement, Illumination, Alumbrado, Extraction forme, Pattern extraction, Extracción forma, Faciès, Facies, Gestion contenu, Content management, Gestión contenido, Gestion projet, Project management, Gestión proyecto, Gestion tâche, Task scheduling, Gestión labor, Luminance, Luminancia, Matrice creuse, Sparse matrix, Matriz dispersa, Mimique, Facial expression, Mímica, Monitorage, Monitoring, Monitoreo, Multitâche, Multithread, Multitarea, Méthode raffinement, Refinement method, Método afinamiento, Méthode échelle multiple, Multiscale method, Método escala múltiple, Obstacle, Obstáculo, Police, Policía, Posture, Postura, Reconnaissance forme, Pattern recognition, Reconocimiento patrón, Représentation parcimonieuse, Sparse representation, Representación parsimoniosa, Régularisation, Regularization, Regularización, Réseau neuronal, Neural network, Red neuronal, Surveillance, Vigilancia, Traitement image, Image processing, Procesamiento imagen, Transfert des connaissances, Knowledge transfer, Transferencia conocimiento, Transformation ondelette, Wavelet transformation, Transformación ondita, Vision ordinateur, Computer vision, Visión ordenador, Reconnaissance visage, Face recognition, Reconocimiento de cara, Neural networks, Shearlet Networks, Shearlets, Sparsity, Wavelet Networks
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Research Groups on Intelligent Machines, University of Sfax, BP 1173, Sfax 3038, Tunisia
Department of Mathematics, University of Houston, Houston, TX 77204, United States
ISSN:
0957-4174
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Telecommunications and information theory
Accession Number:
edscal.28843400
Database:
PASCAL Archive

Weitere Informationen

The major limitation in current facial recognition systems is that they do not perform very well in uncontrolled environments, that is, when faces present variations in pose, illumination, facial expressions and environment. This is a serious obstacle in applications such as law enforcement and surveillance systems. To address this limitation, in this paper we introduce an improved approach to ensure robust face recognition, that relies on two innovative ideas. First, we apply a new multiscale directional framework, called Shearlet Network (SN), to extract facial features. The advantage of this approach comes from the highly sparse representation properties of the shearlet framework that is especially designed to robustly extract the fundamental geometric content of an image. Second, we apply a refinement of the Multi-Task Sparse Learning (MTSL) framework to exploit the relationships among multiple shared tasks generated by changing the regularization parameter during the recognition stage. We provide extensive numerical tests to show that our Sparse Multi-Regularized Shearlet Network (SMRSN) algorithm performs very competitively when compared against different state-of-the-art methods on different experimental protocols, including face recognition in uncontrolled conditions and single-sample-per-person.