Treffer: Succeeding metadata based annotation scheme and visual tips for the automatic assessment of video aesthetic quality in car commercials

Title:
Succeeding metadata based annotation scheme and visual tips for the automatic assessment of video aesthetic quality in car commercials
Source:
Expert systems with applications. 42(1):293-305
Publisher Information:
Amsterdam: Elsevier, 2015.
Publication Year:
2015
Physical Description:
print, 3/4 p
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Logiciel, Software, Organisation des mémoires. Traitement des données, Memory organisation. Data processing, Traitement des données. Listes et chaînes de caractères, Data processing. List processing. Character string processing, Intelligence artificielle, Artificial intelligence, Reconnaissance des formes. Traitement numérique des images. Géométrie algorithmique, Pattern recognition. Digital image processing. Computational geometry, Algorithme k moyenne, K means algorithm, Algoritmo k media, Amas, Cluster, Montón, Analyse amas, Cluster analysis, Analisis cluster, Analyse donnée, Data analysis, Análisis datos, Analyse image, Image analysis, Análisis imagen, Annotation, Anotación, Automobile, Motor car, Automóvil, Classification, Clasificación, Contrôle qualité, Quality control, Control de calidad, Courbe niveau, Contour line, Curva nivel, Critère sélection, Selection criterion, Criterio selección, Esthétique, Aesthetics, Estética, Modélisation, Modeling, Modelización, Multimédia, Multimedia, Métadonnée, Metadata, Metadatos, Partitionnement, Partitioning, Subdivisión, Perception, Percepción, Prétraitement, Pretreatment, Pretratamiento, Publicité, Advertising, Publicidad, Qualité image, Image quality, Calidad imagen, Signal vidéo, Video signal, Señal video, Site Web, Web site, Sitio Web, Technique vidéo, Video technique, Técnica video, Vision ordinateur, Computer vision, Visión ordenador, Apprentissage non supervisé, Unsupervised learning, Aprendizaje no supervisado, Aesthetic quality assessment, Automatic video annotation, Video metadata, Video sentiment analysis, YouTube
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Universidad Carlos III de Madrid, Leganés, Spain
ISSN:
0957-4174
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.28843402
Database:
PASCAL Archive

Weitere Informationen

In this paper, we present a computational model capable to predict the viewer perception of car advertisements videos by using a set of low-level video descriptors. Our research goal relies on the hypothesis that these descriptors could reflect the aesthetic value of the videos and, in turn, their viewers' perception. To that effect, and as a novel approach to this problem, we automatically annotate our video corpus, downloaded from YouTube, by applying an unsupervised clustering algorithm to the retrieved metadata linked to the viewers' assessments of the videos. In this regard, a regular k-means algorithm is applied as partitioning method with k ranging from 2 to 5 clusters, modeling different satisfaction levels or classes. On the other hand, available metadata is categorized into two different types based on the profile of the viewers of the videos: metadata based on explicit and implicit opinion respectively. These two types of metadata are first individually tested and then combined together resulting in three different models or strategies that are thoroughly analyzed. Typical feature selection techniques are used over the implemented video descriptors as a pre-processing step in the classification of viewer perception, where several different classifiers have been considered as part of the experimental setup. Evaluation results show that the proposed video descriptors are clearly indicative of the subjective perception of viewers regardless of the implemented strategy and the number of classes considered. The strategy based on explicit opinion metadata clearly outperforms the implicit one in terms of classification accuracy. Finally, the combined approach slightly improves the explicit, achieving a top accuracy of 72.18% when distinguishing between 2 classes, and suggesting that better classification results could be obtained by using suitable metrics to model perception derived from all available metadata.