Treffer: A new evolutionary approach for neural spike detection based on genetic algorithm

Title:
A new evolutionary approach for neural spike detection based on genetic algorithm
Source:
Expert systems with applications. 42(1):462-467
Publisher Information:
Amsterdam: Elsevier, 2015.
Publication Year:
2015
Physical Description:
print, 1/4 p
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Logiciel, Software, Systèmes informatiques et systèmes répartis. Interface utilisateur, Computer systems and distributed systems. User interface, Organisation des mémoires. Traitement des données, Memory organisation. Data processing, Traitement des données. Listes et chaînes de caractères, Data processing. List processing. Character string processing, Sciences biologiques et medicales, Biological and medical sciences, Sciences biologiques fondamentales et appliquees. Psychologie, Fundamental and applied biological sciences. Psychology, Vertebres: systeme nerveux et organes des sens, Vertebrates: nervous system and sense organs, Système nerveux central, Central nervous system, Electrophysiologie, Electrophysiology, Sciences medicales, Medical sciences, Neurologie, Neurology, Système nerveux (sémiologie, syndromes), Nervous system (semeiology, syndromes), Syndromes encéphaliques généraux: céphalées, douleurs de la face, syncopes, épilepsie, hypertension intracrânienne, oedème cérébral. Infirmité motrice cérébrale, Headache. Facial pains. Syncopes. Epilepsia. Intracranial hypertension. Brain oedema. Cerebral palsy, Algorithme génétique, Genetic algorithm, Algoritmo genético, Algorithme évolutionniste, Evolutionary algorithm, Algoritmo evoluciónista, Consommation énergie, Energy consumption, Consumo energía, Critère sélection, Selection criterion, Criterio selección, Dispositif puissance, Power device, Dispositivo potencia, Epilepsie, Epilepsy, Epilepsia, Filtre, Filter, Filtro, Génie biomédical, Biomedical engineering, Ingeniería biomédica, Implant, Implante, Information courante, Current information, Información corriente, Largeur bande, Bandwidth, Anchura banda, Localisation, Localization, Localización, Pistage, Tracking, Rastreo, Pointe positive, Spike, Espiga positiva, Potentiel champ, Field potential, Potencial campo, Poursuite, Tracking(movable target), Persecución y continuación, Rapport signal bruit, Signal to noise ratio, Relación señal ruido, Réseau neuronal, Neural network, Red neuronal, Réseau sans fil, Wireless network, Red sin hilo, Santé, Health, Salud, Seuil, Threshold, Umbral, Système expert, Expert system, Sistema experto, Système nerveux central, Central nervous system, Sistema nervioso central, Temps réel, Real time, Tiempo real, Traitement signal, Signal processing, Procesamiento señal, Trouble neurologique, Neurological disorder, Trastorno neurológico, NEO, Neural spike detection, Neuronal signal
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Department of Computer Engineering, East Azerbaijan Science and Research Branch, Islamic Azad University, Tabriz, Iran, Islamic Republic of
Control Engineering Department, Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran, Islamic Republic of
ISSN:
0957-4174
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Neurology

Vertebrates : nervous system and sense organs
Accession Number:
edscal.28843415
Database:
PASCAL Archive

Weitere Informationen

Identification of the epileptic features in nervous signals is one of the main goals of neuroscientists and biomedical engineers since it provides valuable information about the current and future health status of a patient. Implantable wireless neural signal recording is a powerful, newly emerging technique that has been suggested for neural signal tracking and recording. One of the main issues with this technique is the transmission of enormous amounts of data, which requires high bandwidth and high power consumption for the implanted device. Neural spike detection and spike sorting can be used to reduce the power consumption and the amount of data transmitted. Neural spike detection is a challenging technique because of the large amount of background noise that exists in the body known as low potential field signals (LPF). Existing signal processing methods make use of amplitude thresholding and artificial neural networks to recognize spike signals, but are very vulnerable to noise and require a large amount of pre-training before being useful. Nonlinear energy operators (NEO) are also used to filter spike signals from this background noise. This method requires precise selection of a particular coefficient that is currently chosen by human intervention, which is time consuming and open to human error. In this work a novel approach utilizing a genetic algorithm (GA) based on a nonlinear energy operator (NEO) is proposed. The proposed expert system uses a GA to automatically adjust the threshold level in the NEO technique to detect the spike within a noisy signal in real time. The method is able to recognize the number and the location of spike-events in a neural signal in real time. Preliminary simulations show that the genetic algorithm gives superior results to the manual selection method, and that the improvement is more pronounced in noisier signals.