Treffer: A method for root cause analysis with a Bayesian belief network and fuzzy cognitive map

Title:
A method for root cause analysis with a Bayesian belief network and fuzzy cognitive map
Source:
Expert systems with applications. 42(1):468-487
Publisher Information:
Amsterdam: Elsevier, 2015.
Publication Year:
2015
Physical Description:
print, 3/4 p
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Recherche operationnelle. Gestion, Operational research. Management science, Recherche opérationnelle et modèles formalisés de gestion, Operational research and scientific management, Théorie de la fiabilité. Renouvellement des équipements, Reliability theory. Replacement problems, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Informatique théorique, Theoretical computing, Recherche information. Graphe, Information retrieval. Graph, Logiciel, Software, Organisation des mémoires. Traitement des données, Memory organisation. Data processing, Traitement des données. Listes et chaînes de caractères, Data processing. List processing. Character string processing, Gestion des mémoires et des fichiers (y compris la protection et la sécurité des fichiers), Memory and file management (including protection and security), Analyse mode défaillance et effet, Failure mode and effect analysis, Análisis modo fallo y efecto, Application médicale, Medical application, Aplicación medical, Apprentissage probabilités, Probability learning, Aprendizaje probabilidades, Approche probabiliste, Probabilistic approach, Enfoque probabilista, Base de connaissances, Knowledge base, Base conocimiento, Calcul souple, Soft computing, Cálculo flexible, Carte cognitive, Cognitive map, Mapa cognitiva, Causalité, Causality, Causalidad, Diagnostic panne, Fault diagnostic, Diagnóstico pana, Détecteur intrus, Intruder detector, Detector intruso, Détection défaut, Defect detection, Detección imperfección, Estimation Bayes, Bayes estimation, Estimación Bayes, Indice aptitude, Capability index, Indice aptitud, Inférence, Inference, Inferencia, Intelligence artificielle, Artificial intelligence, Inteligencia artificial, Logique floue, Fuzzy logic, Lógica difusa, Migration, Migración, Modélisation, Modeling, Modelización, Méthode graphe, Graph method, Método grafo, Probabilité conditionnelle, Conditional probability, Probabilidad condicional, Pronostic, Prognosis, Pronóstico, Raisonnement, Reasoning, Razonamiento, Réseau Bayes, Bayes network, Red Bayes, Réseau croyance, Belief networks, Réseau probabiliste, Probabilistic net, Red probabilista, Réseau télécommunication, Telecommunication network, Red telecomunicación, Sécurité informatique, Computer security, Seguridad informatica, Transmission donnée, Data transmission, Transmisión datos, Réseau neuronal flou, Fuzzy neural nets, Red neuronal difusa, Système détection intrusion, Intrusion detection systems, Sistema de detección de intrusiones, Bayesian belief network, Causal knowledge, Causal reasoning, Fuzzy cognitive map, Root cause analysis
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Faculty of Information Science and Technology, Multimedia University, Melaka, Malaysia
ISSN:
0957-4174
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Operational research. Management
Accession Number:
edscal.28843416
Database:
PASCAL Archive

Weitere Informationen

People often want to know the root cause of things and events in certain application domains such as intrusion detection, medical diagnosis, and fault diagnosis. In many of these domains, a large amount of data is available. The problem is how to perform root cause analysis by leveraging the data asset at hand. Root cause analysis consists of two main functions, diagnosis of the root cause and prognosis of the effect. In this paper, a method for root cause analysis is proposed. In the first phase, a causal knowledge model is constructed by learning a Bayesian belief network (BBN) from data. BBN's backward and forward inference mechanisms are used for the diagnosis and prognosis of the root cause. Despite its powerful reasoning capability, the representation of causal strength in BBN as a set of probability values in a conditional probability table (CPT) is not intuitive at all. It is at its worst when the number of probability values needed grows exponentially with the number of variables involved. Conversely, a fuzzy cognitive map (FCM) can provide an intuitive interface as the causal strength is simply represented by a single numerical value. Hence, in the second phase of the method, an intuitive interface using FCM is generated from the BBN-based causal knowledge model, applying the migration framework proposed and formulated in this paper.