Result: Temporal segmentation and keyframe selection methods for user-generated video search-based annotation

Title:
Temporal segmentation and keyframe selection methods for user-generated video search-based annotation
Source:
Expert systems with applications. 42(1):488-502
Publisher Information:
Amsterdam: Elsevier, 2015.
Publication Year:
2015
Physical Description:
print, 1 p.1/4
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Probabilités et statistiques, Probability and statistics, Théorie des probabilités et processus stochastiques, Probability theory and stochastic processes, Processus de markov, Markov processes, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Informatique théorique, Theoretical computing, Recherche information. Graphe, Information retrieval. Graph, Intelligence artificielle, Artificial intelligence, Reconnaissance des formes. Traitement numérique des images. Géométrie algorithmique, Pattern recognition. Digital image processing. Computational geometry, Analyse mouvement, Motion analysis, Análisis movimiento, Annotation, Anotación, Classification, Clasificación, Comportement utilisateur, User behavior, Comportamiento usuario, Estimation mouvement, Motion estimation, Estimación movimiento, Mobilité, Mobility, Movilidad, Modèle Markov caché, Hidden Markov model, Modelo Markov oculto, Partition, Partición, Pertinence, Relevance, Pertinencia, Signal vidéo, Video signal, Señal video, Système hiérarchisé, Hierarchical system, Sistema jerarquizado, Système recherche, Search system, Sistema investigación, Technique vidéo, Video technique, Técnica video, Variation temporelle, Time variation, Variación temporal, Zoom, Caméra vidéo, Video cameras, Cámara de vídeo, Image clé, key frame, Imágen clave, Recherche image, Image retrieval, Búsqueda de imagen, Segmentation image, Image segmentation, Segmentación de imágenes, Camera motion analysis, Keyframe selection, User Generated Video, Video annotation, Video temporal segmentation
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
Department of Signal Theory and Communications, Universidad Carlos III de Madrid, Leganés 28911, Madrid, Spain
ISSN:
0957-4174
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Mathematics
Accession Number:
edscal.28843417
Database:
PASCAL Archive

Further Information

In this paper we propose a temporal segmentation and a keyframe selection method for User-Generated Video (UGV). Since UGV is rarely structured in shots and usually user's interest are revealed through camera movements, a UGV temporal segmentation system has been proposed that generates a video partition based on a camera motion classification. Motion-related mid-level features have been suggested to feed a Hierarchical Hidden Markov Model (HHMM) that produces a user-meaningful UGV temporal segmentation. Moreover, a keyframe selection method has been proposed that picks a keyframe for fixed-content camera motion patterns such as zoom, still, or shake and a set of keyframes for varying-content translation patterns. The proposed video segmentation approach has been compared to a state-of-the-art algorithm, achieving 8% performance improvement in a segmentation-based evaluation. Furthermore, a complete search-based UGV annotation system has been developed to assess the influence of the proposed algorithms on an end-user task. To that purpose, two UGV datasets have been developed and made available online. Specifically, the relevance of the considered camera motion types has been analyzed for these two datasets, and some guidelines are given to achieve the desired performance-complexity tradeoff. The keyframe selection algorithm for varying-content translation patterns has also been assessed, revealing a notable contribution to the performance of the global UGV annotation system. Finally, it has been shown that the UGV segmentation algorithm also produces improved annotation results with respect to a fixed-rate keyframe selection baseline or a traditional method relying on frame-level visual features.