Treffer: Uniform accrual generating process grouping with self-organizing maps

Title:
Uniform accrual generating process grouping with self-organizing maps
Authors:
Source:
Expert systems with applications. 42(1):554-561
Publisher Information:
Amsterdam: Elsevier, 2015.
Publication Year:
2015
Physical Description:
print, 1/4 p
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Probabilités et statistiques, Probability and statistics, Statistiques, Statistics, Inférence linéaire, régression, Linear inference, regression, Sciences appliquees, Applied sciences, Recherche operationnelle. Gestion, Operational research. Management science, Recherche opérationnelle et modèles formalisés de gestion, Operational research and scientific management, Modèles d'entreprises, Firm modelling, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Intelligence artificielle, Artificial intelligence, Connexionnisme. Réseaux neuronaux, Connectionism. Neural networks, Algorithme Kohonen, Kohonen algorithm, Algoritmo Kohonen, Analyse régression, Regression analysis, Análisis regresión, Autoorganisation, Self organization, Autoorganización, Comptabilité, Accounting, Contabilidad, Durée service, Service life, Duración servicio, Entreprise à entreprise, Business to business, Empresa hacia empresa B2B, Gestion de la qualité, Quality management, Gestión de calidad, Groupage, Grouping, Agrupamiento, Modèle régression, Regression model, Modelo regresión, Modélisation, Modeling, Modelización, Processus Markov, Markov process, Proceso Markov, Réseau neuronal, Neural network, Red neuronal, Similitude, Similarity, Similitud, Théorie locale, Local theory, Teoría local, Accrual generating process, Discretionary accruals, Earnings management, Self-organizing maps
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Hanken School of Economics, Biblioteksgatan 16, 65101 Vasa, Finland
ISSN:
0957-4174
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Mathematics

Operational research. Management
Accession Number:
edscal.28843423
Database:
PASCAL Archive

Weitere Informationen

Most earnings management and earnings quality studies rely on various types of discretionary accrual estimation models. Common assumptions when using these models is that the accrual generating process (AGP) is stable over time or that firms within the same industry have similar AGPs. These assumptions have, however, been challenged in a number of studies. Instead, it has been suggested that AGP is depicted by various accrual determinants and that firms should be grouped according to similarities in the AGP. The purpose of this study is to develop and assess the performance of a self-organizing map (SOM) local regression-based discretionary accrual estimation model. Overall, the results show that the SOM local regression model outperforms previously suggested discretionary accrual estimation models. For example, the detection rate of simulated earnings management for the SOM local regression model is almost twice the detection rate of the commonly used cross-sectional Jones model. In addition to outperforming previously suggested models, the SOM local regression model also gives a visual representation of the AGP of a specific firm in relation to other firms.