Treffer: Classification of countries' progress toward a knowledge economy based on machine learning classification techniques

Title:
Classification of countries' progress toward a knowledge economy based on machine learning classification techniques
Source:
Expert systems with applications. 42(1):562-572
Publisher Information:
Amsterdam: Elsevier, 2015.
Publication Year:
2015
Physical Description:
print, 1 p
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Recherche operationnelle. Gestion, Operational research. Management science, Recherche opérationnelle et modèles formalisés de gestion, Operational research and scientific management, Modèles d'entreprises, Firm modelling, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Logiciel, Software, Organisation des mémoires. Traitement des données, Memory organisation. Data processing, Traitement des données. Listes et chaînes de caractères, Data processing. List processing. Character string processing, Systèmes d'information. Bases de données, Information systems. Data bases, Intelligence artificielle, Artificial intelligence, Algorithme apprentissage, Learning algorithm, Algoritmo aprendizaje, Amas, Cluster, Montón, Analyse régression, Regression analysis, Análisis regresión, Apprentissage(intelligence artificielle), Learning (artificial intelligence), Classification hiérarchique, Hierarchical classification, Clasificación jerarquizada, Classification à vaste marge, Vector support machine, Máquina ejemplo soporte, Compétitivité, Competitiveness, Competitividad, Crise économique, Economic crisis, Crisis económica, Economie marché, Market economy, Economía mercado, Fouille donnée, Data mining, Busca dato, Intelligence artificielle, Artificial intelligence, Inteligencia artificial, Modélisation, Modeling, Modelización, Monitorage, Monitoring, Monitoreo, Politique publique, Public policy, Politica pública, Relation ordre, Ordering, Relación orden, Surveillance, Vigilancia, Système aide décision, Decision support system, Sistema ayuda decisíon, Système incertain, Uncertain system, Sistema incierto, Capital immatériel, Intangible capital, Capital Intangible, Ingénierie connaissances, Knowledge engineering, Ingeniería del conocimiento, Decision support systems, Hierarchical clustering, Knowledge economy, Machine learning, Ordinal classification
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Department of Management and Quantitative Methods, Loyola Andalucía University, Business Administration Faculty (ETEA), Escritor Castilla Aguayo 4, 14004 Córdoba, Spain
Department of Computing and Numerical Analysis, University of Córdoba, Albert Einstein Building, 14071 Córdoba, Spain
ISSN:
0957-4174
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Operational research. Management
Accession Number:
edscal.28843424
Database:
PASCAL Archive

Weitere Informationen

Knowledge is a key factor of competitive advantages in the current economic crisis and uncertain environment. There are a number of indicators to measure knowledge advances, however, the benefits for stakeholders and policy makers are limited because of a lack of classification models. This paper introduces an approach to classify 54 countries (in 2007―2009) according to their progress toward a knowledge economy (KE). To achieve this, the aims of this paper are twofold: first, to find clusters of countries at a similar stage of development toward KE to test if they are meaningful; hence, it will be possible to order the clusters from early KEs (last cluster) to advanced KEs (first cluster). Second, having obtained these clusters, it is possible to build various models to detect the advancement of countries toward KE from one year to another due to its classification. Then, three ordinal classifiers from the machine-learning field were compared in order to select the classifier that performs the best and to confirm the ordinal description of the clusters. Finally, an ordinal model based on the Support Vector Ordinal Regression with Implicit Constraints was selected because of its ability to classify the patterns into the clusters, confirming the appropriateness of the clusters and their ordinal nature. The proposed ordinal classifier could be used for monitoring the progress or stage of transition to KE and for analysing whether a country changes clusters, entering one that performs better or worse.