Treffer: Characterization of time series for analyzing of the evolution of time series clusters
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Mathematics
Operational research. Management
Weitere Informationen
This work proposes a new approach for the characterization of time series in databases (temporal databases ― TDB) for temporal analysis of clusters. For the characterization of time-series it were used the level and trend components calculated through the Holt-Winters smoothing model. For the temporal analysis of those clusters, it was used in a combined manner the AGNES (Agglomerative Hierarchical Cluster) and PAM (Partition Clustering) techniques. For the application of this methodology an R-based script for generating synthetic TDBs was developed. Our proposal allows the evaluation of the clusters, both in the object movement such as in the appearance or disappearance of clusters. The model chosen to characterize the time-series is adequate because it can be applied for short periods of time in situations where changes should be promptly detected for quick decision making.