Result: Gene selection from microarray gene expression data for classification of cancer subgroups employing PSO and adaptive K-nearest neighborhood technique

Title:
Gene selection from microarray gene expression data for classification of cancer subgroups employing PSO and adaptive K-nearest neighborhood technique
Source:
Expert systems with applications. 42(1):612-627
Publisher Information:
Amsterdam: Elsevier, 2015.
Publication Year:
2015
Physical Description:
print, 3/4 p
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Recherche operationnelle. Gestion, Operational research. Management science, Recherche opérationnelle et modèles formalisés de gestion, Operational research and scientific management, Théorie de la fiabilité. Renouvellement des équipements, Reliability theory. Replacement problems, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Logiciel, Software, Organisation des mémoires. Traitement des données, Memory organisation. Data processing, Traitement des données. Listes et chaînes de caractères, Data processing. List processing. Character string processing, Sciences biologiques et medicales, Biological and medical sciences, Sciences biologiques fondamentales et appliquees. Psychologie, Fundamental and applied biological sciences. Psychology, Biologie moleculaire et cellulaire, Molecular and cellular biology, Génétique moléculaire, Molecular genetics, Expression génique, Gene expression, Sciences medicales, Medical sciences, Tumeurs, Tumors, Cancer, Cáncer, Analyse amas, Cluster analysis, Analisis cluster, Bioinformatique, Bioinformatics, Bioinformática, Cancérologie, Cancerology, Cancerología, Cellule tumorale, Tumor cell, Célula tumoral, Classification à vaste marge, Vector support machine, Máquina ejemplo soporte, Diagnostic, Diagnosis, Diagnóstico, Disponibilité, Availability, Disponibilidad, Expression génique, Gene expression, Expresión genética, Génie génétique, Genetic engineering, Ingeniería genética, Identification système, System identification, Identificación sistema, Intelligence en essaim, Swarm intelligence, Inteligencia de enjambre, Jeu rôle, Role playing, Juego de funciones, Maladie, Disease, Enfermedad, Microprocesseur, Microprocessor, Microprocesador, Méthode adaptative, Adaptive method, Método adaptativo, Méthode heuristique, Heuristic method, Método heurístico, Optimisation PSO, Particle swarm optimization, Optimización PSO, Petit échantillon, Small sample, Pequeña muestra, Plus proche voisin, Nearest neighbour, Vecino más cercano, Puce à DNA, DNA chip, Pulga de DNA, Sous groupe, Subgroup, Subgrupo, Tumeur maligne, Malignant tumor, Tumor maligno, ALL_AML data, Adaptive K-nearest neighborhood (KNN), MLL data, Microarray data, Particle swarm optimization (PSO), SRBCT data, Support vector machine (SVM)
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
Department of Electrical Engineering, Future Institute of Engineering and Management, Kolkata, India
Department of Applied Physics, University of Calcutta, Kolkata, India
Department of Electrical Engineering, Jadavpur University, Kolkata, India
ISSN:
0957-4174
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Molecular and cell biology

Operational research. Management

Tumours
Accession Number:
edscal.28843428
Database:
PASCAL Archive

Further Information

These days, microarray gene expression data are playing an essential role in cancer classifications. However, due to the availability of small number of effective samples compared to the large number of genes in microarray data, many computational methods have failed to identify a small subset of important genes. Therefore, it is a challenging task to identify small number of disease-specific significant genes related for precise diagnosis of cancer sub classes. In this paper, particle swarm optimization (PSO) method along with adaptive K-nearest neighborhood (KNN) based gene selection technique are proposed to distinguish a small subset of useful genes that are sufficient for the desired classification purpose. A proper value of K would help to form the appropriate numbers of neighborhood to be explored and hence to classify the dataset accurately. Thus, a heuristic for selecting the optimal values of K efficiently, guided by the classification accuracy is also proposed. This proposed technique of finding minimum possible meaningful set of genes is applied on three benchmark microarray datasets, namely the small round blue cell tumor (SRBCT) data, the acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) data and the mixed-lineage leukemia (MLL) data. Results demonstrate the usefulness of the proposed method in terms of classification accuracy on blind test samples, number of informative genes and computing time. Further, the usefulness and universal characteristics of the identified genes are reconfirmed by using different classifiers, such as support vector machine (SVM).