Result: Sequential Subspace Estimator for biometric authentication

Title:
Sequential Subspace Estimator for biometric authentication
Source:
Neurocomputing (Amsterdam). 148:294-309
Publisher Information:
Amsterdam: Elsevier, 2015.
Publication Year:
2015
Physical Description:
print, 31 ref
Original Material:
INIST-CNRS
Subject Terms:
Cognition, Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Informatique théorique, Theoretical computing, Algorithmique. Calculabilité. Arithmétique ordinateur, Algorithmics. Computability. Computer arithmetics, Logiciel, Software, Systèmes informatiques et systèmes répartis. Interface utilisateur, Computer systems and distributed systems. User interface, Organisation des mémoires. Traitement des données, Memory organisation. Data processing, Gestion des mémoires et des fichiers (y compris la protection et la sécurité des fichiers), Memory and file management (including protection and security), Intelligence artificielle, Artificial intelligence, Reconnaissance des formes. Traitement numérique des images. Géométrie algorithmique, Pattern recognition. Digital image processing. Computational geometry, Analyse composante principale, Principal component analysis, Análisis componente principal, Banque image, Image databank, Banco imagen, Biométrie, Biometrics, Biometría, Complexité calcul, Computational complexity, Complejidad computación, Condition non stationnaire, Non stationary condition, Condición no estacionaria, Condition stationnaire, Stationary condition, Condición estacionaria, Espace vectoriel, Vector space, Espacio vectorial, Faciès, Facies, Filtrage, Filtering, Filtrado, Filtre Kalman, Kalman filter, Filtro Kalman, Interface utilisateur, User interface, Interfase usuario, Méthode sous espace, Subspace method, Método subespacio, Méthode séquentielle, Sequential method, Método secuencial, Résultat expérimental, Experimental result, Resultado experimental, Sécurité informatique, Computer security, Seguridad informatica, Reconnaissance visage, Face recognition, Reconocimiento de cara, Biometric authentication, Image subspace, PCA, Sequential estimator
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
Electrical and Computer Engineering, Ryerson University, Toronto, Ontario, Canada
ISSN:
0925-2312
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.28844544
Database:
PASCAL Archive

Further Information

The principal challenge in biometric authentication is to mitigate the effects of any interference while extracting the biometric features for biometric template generation. Most biometric systems are developed under the assumption that extracted biometrics and the nature of their associated interferences are linear, stationary, and homogeneous. The performance of biometric authentication deteriorates when the underlying assumptions are violated due to nonlinear, nonstationary, and heterogeneous noise. Therefore, a more sophisticated filtering method needs to be developed to deal with these challenges. In this paper, a new Sequential Subspace Estimator (SSE) algorithm for biometric authentication is proposed. In the proposed method, a sequential estimator is being designed in the image subspace which addresses the challenges due to nonlinear, nonstationary, and heterogeneous noise. Furthermore, the proposed method includes a subspace technique that overcomes the computational complexity associated with the sequential estimator. The theoretical foundation of the proposed method along with the experimental results is also presented in this paper. For the experimental evaluation of the proposed method, we use facial images from two public databases: the Put Face Database and the Indian Face Database. The experimental results demonstrate the superiority of the proposed method in comparison with its counterparts.