Result: Large scale multi-class classification with truncated nuclear norm regularization
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Mathematics
Further Information
In this paper, we consider the problem of multi-class image classification when the classes behaviour has a low rank structure. That is, classes can be embedded into a low dimensional space. Traditional multi-class classification algorithms usually use nuclear norm to approximate the rank of the weight matrix. Considering the limited ability of the nuclear norm for the accurate approximation, we propose a new scalable large scale multi-class classification algorithm by using the recently proposed truncated nuclear norm as a better surrogate of the rank operator of matrices along with multinomial logisitic loss. To solve the non-convex and non-smooth optimization problem, we further develop an efficient iterative procedure. In each iteration, by lifting the non-smooth convex subproblem into an infinite dimensional ℓ1norm regularized problem, a simple and efficient accelerated coordinate descent algorithm is applied to find the optimal solution. We conduct a series of evaluations on several public large scale image datasets, where the experimental results show the encouraging improvement of classification accuracy of the proposed algorithm in comparison with the state-of-the-art multi-class classification algorithms.