Result: Large scale multi-class classification with truncated nuclear norm regularization

Title:
Large scale multi-class classification with truncated nuclear norm regularization
Source:
Neurocomputing (Amsterdam). 148:310-317
Publisher Information:
Amsterdam: Elsevier, 2015.
Publication Year:
2015
Physical Description:
print, 32 ref
Original Material:
INIST-CNRS
Subject Terms:
Cognition, Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Algèbre, Algebra, Algèbre linéaire et multilinéaire, matrices, Linear and multilinear algebra, matrix theory, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Logiciel, Software, Organisation des mémoires. Traitement des données, Memory organisation. Data processing, Traitement des données. Listes et chaînes de caractères, Data processing. List processing. Character string processing, Analyse non convexe, Non convex analysis, Análisis no convexo, Analyse non lisse, Nonsmooth analysis, Analisis non regular, Classe état, State class, Clase estado, Dimension infinie, Infinite dimension, Dimensión infinita, Echelle d'évaluation, Evaluation scale, Escala evaluación, Echelle grande, Large scale, Escala grande, Forme tronquée, Truncated shape, Forma truncada, Méthode descente, Descent method, Método descenso, Méthode itérative, Iterative method, Método iterativo, Programmation non convexe, Non convex programming, Programación no convexa, Rang, Rank, Rango, Régularisation, Regularization, Regularización, Résultat expérimental, Experimental result, Resultado experimental, Solution optimale, Optimal solution, Solución óptima, Base donnée très grande, Very large databases, Base de datos a gran escala, Classification multiple, Multiple classification, clasificación múltiple, Norme nucléaire, Nuclear norm, Norma nuclear, Coordinate descent algorithm, Multi-class classification, Truncated nuclear norm
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
State Key Laboratory of CAD&CG, Zhejiang University, No. 388 Yu Hang Tang Road, Hangzhou 310058, China
ISSN:
0925-2312
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Mathematics
Accession Number:
edscal.28844545
Database:
PASCAL Archive

Further Information

In this paper, we consider the problem of multi-class image classification when the classes behaviour has a low rank structure. That is, classes can be embedded into a low dimensional space. Traditional multi-class classification algorithms usually use nuclear norm to approximate the rank of the weight matrix. Considering the limited ability of the nuclear norm for the accurate approximation, we propose a new scalable large scale multi-class classification algorithm by using the recently proposed truncated nuclear norm as a better surrogate of the rank operator of matrices along with multinomial logisitic loss. To solve the non-convex and non-smooth optimization problem, we further develop an efficient iterative procedure. In each iteration, by lifting the non-smooth convex subproblem into an infinite dimensional ℓ1norm regularized problem, a simple and efficient accelerated coordinate descent algorithm is applied to find the optimal solution. We conduct a series of evaluations on several public large scale image datasets, where the experimental results show the encouraging improvement of classification accuracy of the proposed algorithm in comparison with the state-of-the-art multi-class classification algorithms.