Treffer: Semi-supervised change detection method for multi-temporal hyperspectral images

Title:
Semi-supervised change detection method for multi-temporal hyperspectral images
Source:
Neurocomputing (Amsterdam). 148:363-375
Publisher Information:
Amsterdam: Elsevier, 2015.
Publication Year:
2015
Physical Description:
print, 44 ref
Original Material:
INIST-CNRS
Subject Terms:
Cognition, Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Logiciel, Software, Organisation des mémoires. Traitement des données, Memory organisation. Data processing, Traitement des données. Listes et chaînes de caractères, Data processing. List processing. Character string processing, Intelligence artificielle, Artificial intelligence, Apprentissage et systèmes adaptatifs, Learning and adaptive systems, Reconnaissance des formes. Traitement numérique des images. Géométrie algorithmique, Pattern recognition. Digital image processing. Computational geometry, Sciences biologiques et medicales, Biological and medical sciences, Sciences biologiques fondamentales et appliquees. Psychologie, Fundamental and applied biological sciences. Psychology, Ecologie animale, vegetale et microbienne, Animal, plant and microbial ecology, Ecologie appliquée, Applied ecology, Conservation, protection, gestion de l'environnement, de la flore et de la faune, Conservation, protection and management of environment and wildlife, Analyse donnée, Data analysis, Análisis datos, Capteur imagerie hyperspectral, Hyperspectral imaging sensor, Sensor hiperespectral de formación de imágenes, Distance, Distancia, Dépendance du temps, Time dependence, Dependencia del tiempo, Etat transition, Transition state, Estado transitorio, Image bruitée, Noisy image, Imagen sonora, Image multiple, Multiple image, Imagen múltiple, Laplacien, Laplacian, Laplaciano, Modélisation, Modeling, Modelización, Multidisciplinaire, Multidisciplinary, Multidisciplinar, Métrique, Metric, Métrico, Occupation sol, Land use, Ocupación terreno, Problème mal posé, Ill posed problem, Problema mal planteado, Résultat expérimental, Experimental result, Resultado experimental, Télédétection, Remote sensing, Teledetección, Vision ordinateur, Computer vision, Visión ordenador, Apprentissage semi-supervisé, Semi-supervised learning, Aprendizaje semi-supervisado, Détection d'évènements, Event detection, Detección de eventos, Change detection, Distance metrics, Hyperspectral, Noise bands
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Center for OPTical IMagery Analysis and Learning (OPTIMAL), State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, Shaanxi, China
ISSN:
0925-2312
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Animal, vegetal and microbial ecology

Computer science; theoretical automation; systems
Accession Number:
edscal.28844551
Database:
PASCAL Archive

Weitere Informationen

Change detection is one of the most important open topics for multi-temporal remote sensing technology to observe the earth. Recently, many methods are proposed to detect the land-cover change information by multi-temporal hyperspectral images. However, many existing traditional change detection methods failed to utilize the spectral information effectively. Hence the models are not robust enough for more widely applications with noise bands. In this case, a semi-supervised distance metric learning method is proposed to detect the change areas by abundant spectral information of hyperspectral image under the noisy condition. This paper focuses on semi-supervised change detection method, and proposes a new distance metric learning framework for change detection in noisy condition with three mainly contributions: (1) Distance metric learning is demonstrated to be an effective method for revealing the change information by high spectral features. (2) An evolution regular framework is utilized to handle change detection under a noisy condition without removing any noise bands, which is impacted by atmosphere (or water) and always removed manually in other literatures. (3) A semi-supervised Laplacian Regularized Metric Learning method is exploited to tackle the ill-posed sample problem, and large unlabeled data is exploited in our method. The proposed method is performed on two multi-temporal hyperspectral datasets. Experimental results show that the proposed method outperforms the state-of-the-art change detection methods under both ideal and noisy conditions.