Result: A transductive graphical model for single image super-resolution

Title:
A transductive graphical model for single image super-resolution
Source:
Neurocomputing (Amsterdam). 148:376-387
Publisher Information:
Amsterdam: Elsevier, 2015.
Publication Year:
2015
Physical Description:
print, 29 ref
Original Material:
INIST-CNRS
Subject Terms:
Cognition, Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Informatique théorique, Theoretical computing, Algorithmique. Calculabilité. Arithmétique ordinateur, Algorithmics. Computability. Computer arithmetics, Recherche information. Graphe, Information retrieval. Graph, Logiciel, Software, Organisation des mémoires. Traitement des données, Memory organisation. Data processing, Traitement des données. Listes et chaînes de caractères, Data processing. List processing. Character string processing, Intelligence artificielle, Artificial intelligence, Reconnaissance des formes. Traitement numérique des images. Géométrie algorithmique, Pattern recognition. Digital image processing. Computational geometry, Ajustement modèle, Model matching, Ajustamiento modelo, Analyse donnée, Data analysis, Análisis datos, Application médicale, Medical application, Aplicación medical, Approche probabiliste, Probabilistic approach, Enfoque probabilista, Basse résolution, Low resolution, Baja resolución, Complexité calcul, Computational complexity, Complejidad computación, Diagnostic, Diagnosis, Diagnóstico, Divertissement, Entertainment, Estimation Bayes, Bayes estimation, Estimación Bayes, Estimation a priori, A priori estimation, Estimación a priori, Haute résolution, High resolution, Alta resolucion, Modélisation, Modeling, Modelización, Méthode graphe, Graph method, Método grafo, Méthode itérative, Iterative method, Método iterativo, Qualité image, Image quality, Calidad imagen, Réduction dimension, Dimension reduction, Reducción dimensión, Réseau Bayes, Bayes network, Red Bayes, Sélection modèle, Model selection, Selección modelo, Théorie graphe, Graph theory, Teoría grafo, Traitement image, Image processing, Procesamiento imagen, Résolution image, Image resolution, Resolución imagen, Bayesian theorem, Iterative neighbor selection, Probabilistic graph model, Super-resolution
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
Key Laboratory of Ministry of Education for Electronic Equipment Structure Design, Xidian University, Xi'an 710071, China
VIPS Lab, School of Electronic Engineering, Xidian University, Xi'an 710071, China
ISSN:
0925-2312
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.28844552
Database:
PASCAL Archive

Further Information

The image super-resolution technique plays a critical role in many applications, such as digital entertainments and medical diagnosis. Recently, the super-resolution method has been focused on the neighbor embedding techniques. However, these neighbor embedding based methods cannot produce sparse neighbor weights. Furthermore, these methods would not reach minor reconstructing errors only based on low-resolution patch information, which will result in high computational complexity and large construction errors. This paper presents a novel super-resolution method that incorporates iterative adaptation into neighbor selection and optimizes the model with high-resolution patches. In particular, the proposed model establishes a transductive probabilistic graphical model in light of both the low-resolution and high-resolution patches. The weights of the low-resolution neighbor patches can be treated as priori information of the construction weights for the target high-resolution image. The quality of the desired image is greatly improved in the proposed super-resolution method. Finally, the effectiveness of the proposed algorithm is demonstrated with a variety of experiment results.