Treffer: A unified multiset canonical correlation analysis framework based on graph embedding for multiple feature extraction

Title:
A unified multiset canonical correlation analysis framework based on graph embedding for multiple feature extraction
Source:
Neurocomputing (Amsterdam). 148:397-408
Publisher Information:
Amsterdam: Elsevier, 2015.
Publication Year:
2015
Physical Description:
print, 37 ref
Original Material:
INIST-CNRS
Subject Terms:
Cognition, Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Informatique théorique, Theoretical computing, Recherche information. Graphe, Information retrieval. Graph, Logiciel, Software, Systèmes informatiques et systèmes répartis. Interface utilisateur, Computer systems and distributed systems. User interface, Organisation des mémoires. Traitement des données, Memory organisation. Data processing, Traitement des données. Listes et chaînes de caractères, Data processing. List processing. Character string processing, Analyse discriminante, Discriminant analysis, Análisis discriminante, Analyse donnée, Data analysis, Análisis datos, Corrélation canonique, Canonical correlation, Correlación canónica, Critère sélection, Selection criterion, Criterio selección, Décomposition graphe, Graph decomposition, Descomposición grafo, Extraction forme, Pattern extraction, Extracción forma, Fouille donnée, Data mining, Busca dato, Fusion donnée, Data fusion, Fusión datos, Interface multimodale, Multimodal interface, Interfaz multimodal, Maniement donnée, Data handling, Manipulación dato, Modèle géométrique, Geometrical model, Modelo geométrico, Réduction dimension, Dimension reduction, Reducción dimensión, Résultat expérimental, Experimental result, Resultado experimental, Structure donnée, Data structure, Estructura datos, Séparabilité, Separability, Separabilidad, Théorie graphe, Graph theory, Teoría grafo, Apprentissage non supervisé, Unsupervised learning, Aprendizaje no supervisado, Classification forme, Pattern classification, Clasificación de patrones, Extraction caractéristique, Feature extraction, Extracción de características, Plongement de graphe, Graph embedding, Inmersión de grafos, Dimensionality reduction, Feature fusion, Multiple feature extraction, Multiset canonical correlation analysis
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
School of Computer Science and Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
School of Internet of Things, Jiangnan University, Wuxi 214122, China
ISSN:
0925-2312
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.28844554
Database:
PASCAL Archive

Weitere Informationen

Multiset canonical correlation analysis (MCCA) can simultaneously reduce the dimensionality of multimodal data. Thus, MCCA is very much suitable and powerful for multiple feature extraction. However, most existing MCCA-related methods are unsupervised algorithms, which are not very effective for pattern classification tasks. In order to improve discriminative power for handling multimodal data, we, in this paper, propose a unified multiset canonical correlation analysis framework based on graph embedding for dimensionality reduction (GbMCC-DR). Under GbMCC-DR framework, three novel supervised multiple feature extraction methods, i.e., GbMCC-LDA, GbMCC-LDE, and GbMCC-MFA are presented by incorporating several well-known graphs. These three methods consider not only geometric structure of multimodal data but also separability of different classes. Moreover, theoretical analysis further shows that, in some specific circumstances, several existing MCCA-related algorithms can be unified into GbMCC-DR framework. Therefore, this proposed framework has good expansibility and generalization. The experimental results on both synthetic data and several popular real-world datasets demonstrate that three proposed algorithms achieve better recognition performance than existing related algorithms, which is also the evidence for effectiveness of GbMCC-DR framework.