Treffer: FPGA-based hardware accelerator for the prediction of protein secondary class via fuzzy K-nearest neighbors with Lempel-Ziv complexity based distance measure
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Electronics
Molecular biophysics
Weitere Informationen
Correct prediction of protein secondary structural classes is vital for the prediction of tertiary structures and understanding of their function. Most of the prediction algorithms require lengthy computation time. Nearest neighbor ― complexity distance measure (NN-CDM) algorithm was one of the significant prediction algorithms using Lempel―Ziv (LZ) complexity-based distance measure, but it is slow and ineffective in handling uncertainties. To solve the problems, we propose fuzzy NN-CDM (FKNN-CDM) algorithm that incorporates the confidence level of prediction results and enhance the prediction process by designing hardware architecture that implements the proposed algorithm in an FPGA board. Highest average prediction accuracies for Z277 and 25PDB datasets using proposed algorithm are 84.12% and 47.81% respectively, with 15 times faster computation using an Altera DE2-115 FPGA board.