Treffer: Noise modeling and representation based classification methods for face recognition
Department of Computer Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 Jiangsu, China
Information Engineering College, Henan University of Science and Technology, Luoyang, 471000 Henan, China
Shenzhen Sunwin Intelligent Corporation, Shenzhen, 518055 Guangdong, China
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Weitere Informationen
In this paper, we propose a novel noise modeling framework to improve a representation based classification (NMFIRC) method for robust face recognition. The representation based classification method has evoked large repercussions in the field of face recognition. Generally, the representation based classification method (RBCM) always first represents the test sample as a linear combination of the training samples, and then classifies the test sample by judging which class leads to a minimum reconstruction residual. However, RBCMs still cannot ideally resolve the face recognition problem owing to the varying facial expressions, poses and different illumination conditions. Furthermore, these variations can immensely influence the representation accuracy when using RBCMs to perform classification. Thus, it is a crucial problem to explore an effective way to better represent the test sample in RBCMs. In order to obtain a highly precise representation metric, the proposed framework first iteratively diminishes the representation noise and achieves better representation solution of the linear combination until it converges, and then exploits the determined 'optimal' representation solution and a fusion method to perform classification. Extensive experiments demonstrated that the proposed framework can simultaneously notably improve the representation capability by decreasing the representation noise and improve the classification accuracy of RCBM.